题目描述

言归正传,小X的梦中,他在西藏开了一家大型旅游公司,现在,他要为西藏的各个景点设计一组铁路线。但是,小X发现,来旅游的游客都很挑剔,他们乘火车在各个景点间游览,景点的趣味当然是不用说啦,关键是路上。试想,若是乘火车一圈转悠,却发现回到了游玩过的某个景点,花了一大堆钱却在路上看不到好的风景,那是有多么的恼火啊。

所以,小X为所有的路径定义了两个值,Vi和Pi,分别表示火车线路的风景趣味度和乘坐一次的价格。现在小X想知道,乘客从任意一个景点开始坐火车走过的一条回路上所有的V之和与P之和的比值的最大值。以便为顾客们推荐一条环绕旅游路线(路线不一定包含所有的景点,但是不可以存在重复的火车路线)。

于是,小X梦醒之后找到了你……

输入格式

第一行两个正整数N,M,表示有N个景点,M条火车路线,火车路线是单向的。

以下M行,每行4个正整数,分别表示一条路线的起点,终点,V值和P值。

注意,两个顶点间可能有多条轨道,但一次只能走其中的一条。

输出格式

一个实数,表示一条回路上最大的比值,保留1位小数。

若没有回路,输出-1。

说明/提示

对于30%的数据,1≤N≤100,1≤M≤20;

对于60%的数据,1≤N≤3,000,1≤M≤2,000;

对于100%的数据,1≤N≤7,000,1≤M≤20,000,1≤Vi,Pi≤1,000.

保证答案在200以内.


01分数规划+负环

ans>= \(\sum\)vi/pi

\(\sum\) ans*p1-vi>=0

把这个作为权值,然后找负环

#include<queue>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define db double
using namespace std;
const db eps=1e-2;
const int N=7e3+10,M=2e4+10,inf=1<<29;
int nxt[M],head[N],go[M],V[M],P[M],tot;
inline void add(int u,int v,int o1,int o2){
nxt[++tot]=head[u];head[u]=tot;go[tot]=v;V[tot]=o1;P[tot]=o2;
}
db dis[N];
bool vis[N];
int used[N];
int s;
int n,m;
inline bool spfa(db ans,int now){
vis[now]=true;
for(int i=head[now];i;i=nxt[i]){
int v=go[i];
db x=ans*P[i]-V[i];
if(dis[v]>dis[now]+x){
if(vis[v])return 0;
else{
dis[v]=dis[now]+x;
vis[now]=1;
if(!spfa(ans,v))return 0;
}
}
}
vis[now]=0;
return 1;
}
inline bool check(db x){
for(int i=1;i<=n;i++){
dis[i]=inf;
used[i]=0;
vis[i]=0;
}
return !spfa(x,s);
}
int main(){
cin>>n>>m;
db l=0,r=3000,ans=-1;
for(int i=1,u,v,o1,o2;i<=m;i++){
scanf("%d%d%d%d",&u,&v,&o1,&o2);
add(u,v,o1,o2);
}
s=n+1;
for(int i=1;i<=n;i++)add(s,i,0,0);
while(l+eps<r){
db mid=(l+r)/2;
if(check(mid)){
l=mid;
ans=mid;
}else{
r=mid;
}
}
if(ans==-1)printf("-1\n");
else
printf("%.1f\n",ans);
}

luogu P1768 天路 |01分数规划+负环的更多相关文章

  1. luogu 2115 破坏(01分数规划)

    题意:给出一个序列,删除一个连续的子串后使得剩下的平均值最小. 典型的01分数规划,令f(x)=(sum1[i]+sum2[j])/(i+j).sum1表示前缀和,sum2表示后缀和,那么我们就相当于 ...

  2. P3288-[SCOI2014]方伯伯运椰子【0/1分数规划,负环】

    正题 题目链接:https://www.luogu.com.cn/problem/P3288 题目大意 给出\(n\)个点\(m\)条边的一张图,没条边\(i\)流量为\(c_i\),费用是\(d_i ...

  3. POJ3621Sightseeing Cows[01分数规划 spfa(dfs)负环 ]

    Sightseeing Cows Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 9703   Accepted: 3299 ...

  4. bzoj 3597: [Scoi2014]方伯伯运椰子 [01分数规划 消圈定理 spfa负环]

    3597: [Scoi2014]方伯伯运椰子 题意: from mhy12345 给你一个满流网络,对于每一条边,压缩容量1 需要费用ai,扩展容量1 需要bi, 当前容量上限ci,每单位通过该边花费 ...

  5. bzoj3597[Scoi2014]方伯伯运椰子 01分数规划+spfa判负环

    3597: [Scoi2014]方伯伯运椰子 Time Limit: 30 Sec  Memory Limit: 64 MBSubmit: 594  Solved: 360[Submit][Statu ...

  6. 【题解】 [HNOI2009] 最小圈 (01分数规划,二分答案,负环)

    题目背景 如果你能提供题面或者题意简述,请直接在讨论区发帖,感谢你的贡献. 题目描述 对于一张有向图,要你求图中最小圈的平均值最小是多少,即若一个圈经过k个节点,那么一个圈的平均值为圈上k条边权的和除 ...

  7. 2018.09.24 bzoj1486: [HNOI2009]最小圈(01分数规划+spfa判负环)

    传送门 答案只保留了6位小数WA了两次233. 这就是一个简单的01分数规划. 直接二分答案,根据图中有没有负环存在进行调整. 注意二分边界. 另外dfs版spfa判负环真心快很多. 代码: #inc ...

  8. [转]01分数规划算法 ACM 二分 Dinkelbach 最优比率生成树 最优比率环

    01分数规划 前置技能 二分思想最短路算法一些数学脑细胞? 问题模型1 基本01分数规划问题 给定nn个二元组(valuei,costi)(valuei,costi),valueivaluei是选择此 ...

  9. 2018.09.12 poj3621Sightseeing Cows(01分数规划+spfa判环)

    传送门 01分数规划板题啊. 发现就是一个最优比率环. 这个直接二分+spfa判负环就行了. 代码: #include<iostream> #include<cstdio> # ...

随机推荐

  1. Zabbix日志监控插件

    #!/usr/bin/env python # coding:utf-8 import re import os import sys import logging logging.basicConf ...

  2. python中程序的异常处理

    什么叫异常? 导致程序异常退出叫做异常 try...except...else 如果要抓取某种特定异常可以用except ERROR as e else:如果程序正常执行那么会执行else里面的代码 ...

  3. SpringBoot 2.x版本+MultipartFile设置指定文件上传大小

    SpringBoot-versio:2.1.9-RELEASE 由于新版本的SpringBoot已经弃用了如下, 这种方式,提供了新的 配置方案. 这个是官方的介绍 Handling Multipar ...

  4. JVM原理速记复习Java虚拟机总结思维导图面试必备

    良心制作,右键另存为保存 喜欢可以点个赞哦 Java虚拟机 一.运行时数据区域 线程私有 程序计数器 记录正在执行的虚拟机字节码指令的地址(如果正在执行的是Native方法则为空),是唯一一个没有规定 ...

  5. Weblogic 12c 的 Apache HTTP Server 整合插件(Plug-In)下载地址

    资料来源:到哪里下载Weblogic 12c 的Plug-In 为 Apache HTTP Server 摘录如下: 最新的Weblogic 12c不再为 Apache HTTP Server提供缺省 ...

  6. Vue学习笔记:Vue组件的核心概念(下)

    1.双向绑定和单向数据流: 本质上还是单向数据流 视图<——>数据 v-model:仅仅是一个简写,用更少代码去实现功能. 自定义事件 .sync 修饰符 2.虚拟DOM及KEY属性作用 ...

  7. PHP Laravel5实现的RBAC权限管理操作示例

    根据不同的权限,在菜单栏显示不同的功能,只对菜单进行了限制,若对路由也进行限制,可以根据菜单的例子,请自行完善,开发.下面请认真学习一下laravel的RBAC设计 1.建表(用户表.角色表.权限表. ...

  8. NetCore下搭建websocket集群方案

    介绍 最近在做一个基于netcore的实时消息服务.最初选用的是ASP.NET Core SignalR,但是后来发现目前它并没有支持IOS的客户端,所以自己只好又基于websocket重新搭建了一套 ...

  9. Flsk&pyecharts 动态数据可视化

    1:数据源 Hollywood Movie Dataset: 好莱坞2006-2011数据集  实验目的: 实现 统计2006-2011的数据综合统计情况,进行数据可视化 gitee地址: https ...

  10. 06_K-近邻算法

    k-近邻算法 算法介绍 定义: 如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一类别,则该样本也属于这个类别. 计算距离公式:欧式距离 (两点之间距离) 需要做标准化 ...