从最简单的例子出发

假定现在有一个数组a = [3, 1, 2, 4, 6, 1]现在要算数组a中最大数的索引是多少.这个问题对于刚学编程的同学就能解决.最直接的思路,先假定第0个数最大,然后拿这个和后面的数比,找到大的就更新索引.代码如下

a = [3, 1, 2, 4, 6, 1]
maxindex = 0
i = 0
for tmp in a:
if tmp > a[maxindex]:
maxindex = i
i += 1
print(maxindex)

这个问题虽然简单.但是可以帮助我们理解argmax.

解释

还是从一维数组出发.看下面的例子.

import numpy as np
a = np.array([3, 1, 2, 4, 6, 1])
print(np.argmax(a))

argmax返回的是最大数的索引.argmax有一个参数axis,默认是0,表示第几维的最大值.看二维的情况.

import numpy as np
a = np.array([[1, 5, 5, 2],
[9, 6, 2, 8],
[3, 7, 9, 1]])
print(np.argmax(a, axis=0))

为了描述方便,a就表示这个二维数组.np.argmax(a, axis=0)的含义是a[0][j],a[1][j],a[2]j中最大值的索引.从a[0][j]开始,最大值索引最初为(0,0,0,0),拿a[0][j]和a[1][j]作比较,9大于1,6大于5,8大于2,所以最大值索引由(0,0,0,0)更新为(1,1,0,1),再和a[2][j]作比较,7大于6,9大于5所以更新为(1,2,2,1).再分析下面的输出.

import numpy as np
a = np.array([[1, 5, 5, 2],
[9, 6, 2, 8],
[3, 7, 9, 1]])
print(np.argmax(a, axis=1))

np.argmax(a, axis=1)的含义是a[i][0],a[i][1],a[i][2],a[i]3中最大值的索引.从a[i][0]开始,a[i][0]对应的索引为(0,0,0),先假定它就是最大值索引(思路和上节简单例子完全一致)拿a[i][0]和a[i][1]作比较,5大于1,7大于3所以最大值索引由(0,0,0)更新为(1,0,1),再和a[i][2]作比较,9大于7,更新为(1,0,2),再和a[i][3]作比较,不用更新,最终值为(1,0,2)

再看三维的情况.

import numpy as np
a = np.array([
[
[1, 5, 5, 2],
[9, -6, 2, 8],
[-3, 7, -9, 1]
], [
[-1, 5, -5, 2],
[9, 6, 2, 8],
[3, 7, 9, 1]
]
])
print(np.argmax(a, axis=0))

np.argmax(a, axis=0)的含义是a[0][j][k],a[1][j][k] (j=0,1,2,k=0,1,2,3)中最大值的索引.从a[0][j][k]开始,a[0][j][k]对应的索引为((0,0,0,0),(0,0,0,0),(0,0,0,0)),拿a[0][j][k]和a[1][j][k]对应项作比较6大于-6,3大于-3,9大于-9,所以更新这几个位置的索引,将((0,0,0,0),(0,0,0,0),(0,0,0,0))更新为((0,0,0,0),(0,1,0,0),(1,0,1,0)). 再看axis=1的情况.

import numpy as np
a = np.array([
[
[1, 5, 5, 2],
[9, -6, 2, 8],
[-3, 7, -9, 1]
], [
[-1, 5, -5, 2],
[9, 6, 2, 8],
[3, 7, 9, 1]
]
])
print(np.argmax(a, axis=1))

np.argmax(a, axis=1)的含义是a[i][0][k],a[i][1][k] (i=0,1,k=0,1,2,3)中最大值的索引.从a[i][0][k]开始,a[i][0][k]对应的索引为((0,0,0,0),(0,0,0,0)),拿a[i][0][k]和a[i][1][k]对应项作比较,9大于1,8大于2,9大于-1,6大于5,2大于-5,8大于2,所以更新这几个位置的索引,将((0,0,0,0),(0,0,0,0))更新为((1,0,0,1),(1,1,1,1)),现在最大值对应的数组为((9,5,5,8),(9,6,2,8)).再拿((9,5,5,8),(9,6,2,8))和a[i][2][k]对应项从比较,7大于5,7大于6,9大于2.更新这几个位置的索引.将((1,0,0,1),(1,1,1,1))更新为((1,2,0,1),(1,2,2,1)).axis=2的情况也是类似的.

参考资料

numpy官方文档

详解numpy的argmax的更多相关文章

  1. 【python】详解numpy库与pandas库axis=0,axis= 1轴的用法

    对数据进行操作时,经常需要在横轴方向或者数轴方向对数据进行操作,这时需要设定参数axis的值: axis = 0 代表对横轴操作,也就是第0轴: axis = 1 代表对纵轴操作,也就是第1轴: nu ...

  2. numpy的文件存储.npy .npz 文件详解

    Numpy能够读写磁盘上的文本数据或二进制数据. 将数组以二进制格式保存到磁盘 np.load和np.save是读写磁盘数组数据的两个主要函数,默认情况下,数组是以未压缩的原始二进制格式保存在扩展名为 ...

  3. 深度学习之卷积神经网络(CNN)详解与代码实现(一)

    卷积神经网络(CNN)详解与代码实现 本文系作者原创,转载请注明出处:https://www.cnblogs.com/further-further-further/p/10430073.html 目 ...

  4. 代码详解:TensorFlow Core带你探索深度神经网络“黑匣子”

    来源商业新知网,原标题:代码详解:TensorFlow Core带你探索深度神经网络“黑匣子” 想学TensorFlow?先从低阶API开始吧~某种程度而言,它能够帮助我们更好地理解Tensorflo ...

  5. 深度学习基础(CNN详解以及训练过程1)

    深度学习是一个框架,包含多个重要算法: Convolutional Neural Networks(CNN)卷积神经网络 AutoEncoder自动编码器 Sparse Coding稀疏编码 Rest ...

  6. DeepLearning tutorial(3)MLP多层感知机原理简介+代码详解

    本文介绍多层感知机算法,特别是详细解读其代码实现,基于python theano,代码来自:Multilayer Perceptron,如果你想详细了解多层感知机算法,可以参考:UFLDL教程,或者参 ...

  7. 【转载】 深度学习之卷积神经网络(CNN)详解与代码实现(一)

    原文地址: https://www.cnblogs.com/further-further-further/p/10430073.html ------------------------------ ...

  8. 超详细的Tensorflow模型的保存和加载(理论与实战详解)

    1.Tensorflow的模型到底是什么样的? Tensorflow模型主要包含网络的设计(图)和训练好的各参数的值等.所以,Tensorflow模型有两个主要的文件: a) Meta graph: ...

  9. 【机器学习】【条件随机场CRF-2】CRF的预测算法之维特比算法(viterbi alg) 详解 + 示例讲解 + Python实现

    1.CRF的预测算法条件随机场的预测算法是给定条件随机场P(Y|X)和输入序列(观测序列)x,求条件概率最大的输出序列(标记序列)y*,即对观测序列进行标注.条件随机场的预测算法是著名的维特比算法(V ...

随机推荐

  1. 理解Spark SQL(一)—— CLI和ThriftServer

    Spark SQL主要提供了两个工具来访问hive中的数据,即CLI和ThriftServer.前提是需要Spark支持Hive,即编译Spark时需要带上hive和hive-thriftserver ...

  2. Test Complete 的自动化测试 --- 计算器

    Test Complete 的自动化测试 --- 计算器   ·PS:工具:Test Complete, OS: win XP, (win10 不支持该工具的自动化测试) ·该篇博客将会讲1.如何录制 ...

  3. nyoj 274-正三角形的外接圆面积 (R = PI * a * a / 3)

    274-正三角形的外接圆面积 内存限制:64MB 时间限制:1000ms 特判: No 通过数:14 提交数:22 难度:0 题目描述: 给你正三角形的边长,pi=3.1415926 ,求正三角形的外 ...

  4. API网关在API安全性中的作用

    从单一应用程序切换到微服务时,客户端的行为不能与客户端具有该应用程序的一个入口点的行为相同.简单来说就是微服务上的某一部分功能与单独实现该应用程序时存在不同. 目前在使用微服务时,客户端必须处理微服务 ...

  5. 系统信息命令(uname、dmesg、df、hostname、free)

    uname 显示计算机及操作系统相关的信息,uname -a显示全部信息,uname -r内核的发行号,各种信息可以有单独的选项分别指出 [lixn@Fedora24 ~]$ uname -a Lin ...

  6. win10中java环境变量配置

    首先,应该安装jdk,jdk的安装一般是jdk8,一般情况下去官网下载,此处有jdk8的网盘链接: -- 在安装jdk时候,可以看下这篇jdk和jre区别的博客--,有助于理解两者的区别和联系. 接触 ...

  7. spring boot集成shiro-redis时,分布式根据seesionId获取session报错排查总结

    昨天在集成shiro-redis的时候,使用sessionId在其他微服务获取用户的session时,发生错误:There is no session with id [xxx]. 查遍了所有资料,基 ...

  8. 联想Y7000,I5-9300H+Nvidia GTX 1050, kali linux的nvidia显卡驱动安装

    转载自,Linux安装NVIDIA显卡驱动的正确姿势 https://blog.csdn.net/wf19930209/article/details/81877822#NVIDIA_173 ,主要用 ...

  9. day 23 面向对象中类的成员 和嵌套

    1.类的成员? 变量.方法.属性 class Foo: # 方法 def __init__(self,name): # 实例变量/字段 self.name = name # 方法 def func(s ...

  10. Tensorflow多层LSTM代码分析

    1.tf.Graph() 你一旦开始你的任务,就已经有一个默认的图已经创建好了.而且可以通过调用tf.get_default_graph()来访问到. 添加一个操作到默认的图里面,只要简单的调用一个定 ...