简单易学的机器学习算法——决策树之ID3算法
一、决策树分类算法概述
二、ID3算法的概述
三、划分数据的依据
1、信息熵(Entropy)
2、信息增益(Information gain)
四、实验仿真
1、数据预处理
2、实验结果
%% Decision Tree
% ID3 %导入数据
%data = [1,1,1;1,1,1;1,0,0;0,1,0;0,1,0]; data = [0,2,0,0,0;
0,2,0,1,0;
1,2,0,0,1;
2,1,0,0,1;
2,0,1,0,1;
2,0,1,1,0;
1,0,1,1,1;
0,1,0,0,0;
0,0,1,0,1;
2,1,1,0,1;
0,1,1,1,1;
1,1,0,1,1;
1,2,1,0,1;
2,1,0,1,0]; % 生成决策树
createTree(data);
生成决策树
function [ output_args ] = createTree( data )
[m,n] = size(data);
disp('original data:');
disp(data);
classList = data(:,n);
classOne = 1;%记录第一个类的个数
for i = 2:m
if classList(i,:) == classList(1,:)
classOne = classOne+1;
end
end % 类别全相同
if classOne == m
disp('final data: ');
disp(data);
return;
end % 特征全部用完
if n == 1
disp('final data: ');
disp(data);
return;
end bestFeat = chooseBestFeature(data);
disp(['bestFeat: ', num2str(bestFeat)]);
featValues = unique(data(:,bestFeat));
numOfFeatValue = length(featValues); for i = 1:numOfFeatValue
createTree(splitData(data, bestFeat, featValues(i,:)));
disp('-------------------------');
end
end
选择信息增益最大的特征
%% 选择信息增益最大的特征
function [ bestFeature ] = chooseBestFeature( data )
[m,n] = size(data);% 得到数据集的大小 % 统计特征的个数
numOfFeatures = n-1;%最后一列是类别
% 原始的熵
baseEntropy = calEntropy(data); bestInfoGain = 0;%初始化信息增益
bestFeature = 0;% 初始化最佳的特征位 % 挑选最佳的特征位
for j = 1:numOfFeatures
featureTemp = unique(data(:,j));
numF = length(featureTemp);%属性的个数
newEntropy = 0;%划分之后的熵
for i = 1:numF
subSet = splitData(data, j, featureTemp(i,:));
[m_1, n_1] = size(subSet);
prob = m_1./m;
newEntropy = newEntropy + prob * calEntropy(subSet);
end %计算增益
infoGain = baseEntropy - newEntropy; if infoGain > bestInfoGain
bestInfoGain = infoGain;
bestFeature = j;
end
end
end
计算熵
划分数据
function [ subSet ] = splitData( data, axis, value )
[m,n] = size(data);%得到待划分数据的大小 subSet = data;
subSet(:,axis) = [];
k = 0;
for i = 1:m
if data(i,axis) ~= value
subSet(i-k,:) = [];
k = k+1;
end
end
end
简单易学的机器学习算法——决策树之ID3算法的更多相关文章
- 【Machine Learning·机器学习】决策树之ID3算法(Iterative Dichotomiser 3)
目录 1.什么是决策树 2.如何构造一棵决策树? 2.1.基本方法 2.2.评价标准是什么/如何量化评价一个特征的好坏? 2.3.信息熵.信息增益的计算 2.4.决策树构建方法 3.算法总结 @ 1. ...
- 机器学习之决策树(ID3 、C4.5算法)
声明:本篇博文是学习<机器学习实战>一书的方式路程,系原创,若转载请标明来源. 1 决策树的基础概念 决策树分为分类树和回归树两种,分类树对离散变量做决策树 ,回归树对连续变量做决策树.决 ...
- 机器学习之决策树(ID3)算法
最近刚把<机器学习实战>中的决策树过了一遍,接下来通过书中的实例,来温习决策树构造算法中的ID3算法. 海洋生物数据: 不浮出水面是否可以生存 是否有脚蹼 属于鱼类 1 是 是 是 2 ...
- 简单易学的机器学习算法——EM算法
简单易学的机器学习算法——EM算法 一.机器学习中的参数估计问题 在前面的博文中,如“简单易学的机器学习算法——Logistic回归”中,采用了极大似然函数对其模型中的参数进行估计,简单来讲即对于一系 ...
- 简单易学的机器学习算法—SVD奇异值分解
简单易学的机器学习算法-SVD奇异值分解 一.SVD奇异值分解的定义 假设M是一个的矩阵,如果存在一个分解: 其中的酉矩阵,的半正定对角矩阵,的共轭转置矩阵,且为的酉矩阵.这样的分解称为M的奇 ...
- 简单易学的机器学习算法—基于密度的聚类算法DBSCAN
简单易学的机器学习算法-基于密度的聚类算法DBSCAN 一.基于密度的聚类算法的概述 我想了解下基于密度的聚类算法,熟悉下基于密度的聚类算法与基于距离的聚类算法,如K-Means算法之间的区别. ...
- 决策树之ID3算法
一.决策树之ID3算法简述 1976年-1986年,J.R.Quinlan给出ID3算法原型并进行了总结,确定了决策树学习的理论.这可以看做是决策树算法的起点.1993,Quinlan将ID3算法改进 ...
- 【Machine Learning】决策树之ID3算法 (2)
决策树之ID3算法 Content 1.ID3概念 2.信息熵 3.信息增益 Information Gain 4. ID3 bias 5. Python算法实现(待定) 一.ID3概念 ID3算法最 ...
- 如何理解C4.5算法解决了ID3算法的偏向于选择取值较多的特征问题
如何理解C4.5算法解决了ID3算法的偏向于选择取值较多的特征问题 考虑一个极端情况,某个属性(特征)的取值很多,以至于每一个取值对应的类别只有一个.这样根据\[H(D) - H(D|A)\]可以得知 ...
随机推荐
- [wcp部署]Linux(Ubuntu)安装部署WCP
1.安装JAVA运行环境 配置环境变量及安装jdk mkdir /usr/local/java tar -zxvf jdk-8u31-linux-x64.gz #解压jdk包 mv jdk1.8.0_ ...
- 划艇:dp/组合数/区间离散化
Description 在首尔城中,汉江横贯东西.在汉江的北岸,从西向东星星点点地分布着 N 个划艇学校,编号依次为 1 到 N.每个学校都拥有若干艘划艇.同一所学校的所有划艇颜色相同,不同的学校的划 ...
- 我跟上家老板说过的最后一句话:转.NET Core吧
最近几天浩子终于刚刚脱离了令人发指工作,一者是年底了,一者是不要向生活低头,就在这时我选择了第二者. 上家是做物联网的,人数不多,七八名开发人员,感觉都还可以,都很年轻没有秃顶,糊里糊涂就选择了入职. ...
- [转载]2.9 UiPath中断活动Continue的介绍和使用
一.Continue的介绍 跳过当前For Each 循环内的迭代, 结束本次循环,Continue控件只能用于For Each循环中 二.Continue在UiPath中结合For Each循环的使 ...
- 在VMware环境下安装Windows2008
1.软硬件安装 软件:推荐使用VMware,这里我使用的是VMware15 镜像:Windows 2008 如果没有镜像可以到这里 链接:https://pan.baidu.com/s/1r_7K-U ...
- Java设计模式之单利模式(Singleton)
单利模式的应用场景: 单利模式(Singleton Pattern)是指确保一个类在任何情况下都绝对只有一个实例.并提供一个全局反访问点.单利模式是创建型模式.单利模式在生活中应用也很广泛,比如公司C ...
- Secure CRT注册码
secure CRT 把记忆的东西放在这就行了,:) SecureCRT 5.2.2的注册码 Name: Apollo InteractiveCompany: Apollo ...
- 阿里云ECS服务器部署HADOOP集群(三):ZooKeeper 完全分布式集群搭建
本篇将在阿里云ECS服务器部署HADOOP集群(一):Hadoop完全分布式集群环境搭建的基础上搭建,多添加了一个 datanode 节点 . 1 节点环境介绍: 1.1 环境介绍: 服务器:三台阿里 ...
- NPM 源的管理器nrm
作为一个 NPM 源管理器,nrm允许快速地在如下 NPM 源间切换: 列表项目 npm cnpm strongloop enropean australia nodejitsu taobao Ins ...
- 对js中局部变量、全局变量和闭包的理解
对js中局部变量.全局变量和闭包的理解 局部变量 对于局部变量,js给出的定义是这样的:在 JavaScript函数内部声明的变量(使用 var)是局部变量,所以只能在函数内部访问它.(该变量的作用域 ...