pandas处理excel的常用方法技巧(上)
1. 导库
import pandas as pd
2. 读取excel文件
这里要注意的就是第二个参数header如果不设置,pandas会默认把excel的第一行当作columns,header=None的时候pandas会为我们新生成从0开始的数字做columns, 我们可以通过header=1把第二行当作columns;第三个参数index_col是表示用哪一列做index的,如果不设置的话,pandas会默认生成一串从0开始的数字当作index,我们可以设置指定列来当作index,例如index_col=“id”.
如果出现数据没在excel表格的左上角,可以使用skiprows参数来略过行,也可以使用usecols="F:H"来决定从第几列开始读取
可以使用sheet_name=参数决定读取第几个sheet
df = pd.read_excel('d:/用户信息.xlsx', header=1, index_col='id')
df = pd.read_excee('d:/books.xlsx', skiprows=3, usecols="G:L")
3. 读取一个对象的头和尾
我们可以通过head()方法和tail()方法来读取头和尾,不设置参数默认读5行,可以设置int类型参数来决定我们读多少行。
df.head() # 读前五行
df.head(7) # 读前七行
df.tail() # 读后五行
df.tail(3) # 读后三行
4. 为对象设置columns
通过修改对象的columns属性就相当于重新为对象设置了columns
df.columns = ['订单id', '用户id', '订单状态']
5. 为对象设置index
我们可以通过set_index()方法设置index, 如我们可以把订单id这一列设置为index,但是要注意的是设置之后,订单id将不再出现在df.columns属性中了,会变成index的name;第二个参数inplace就地修改,可以设置为True和False.
df.set_index('订单id', inplace=True)
5. 写入文件保存
可以通过to_excel()方法保存到本地.
df.to_excel('d:/user_id.xlsx')
6. pandas中表格的行和列
在一个二维表格中,一行或者一列我们都可以用Series对象来表示。一个Series是当作行还是当作列,完全是由我们加入的方法决定的。
7. Series简介和Series属性
Series的结构和字典的结构很相似,不过在Series中不叫keys了,叫index;
Series的属性有index, name, value, data(快要移除了), 还有其他不常用属性可以到pycharm中一个点全出来了.
8. Series创建
创建一个空的Series:
s1 = pd.Series()
从字典生成,字典的key是这里的index
d = {'x':100, 'y':200, 'z':300}
s2 = pd.Series(d)
从列表生成,这时候需要两个列表, 一个用作value,一个用作index
lst1 = [100, 200, 300] # 当作value
lst2 = ['a', 'b', 'c'] # 当作index
s3 = pd.Series(lst1, index=lst2)
9. 用Series来构造DataFrame
相当于我们用一行一行或者一列一列元素,拼出一个excel表格;
首先看一下用三个Series对象构造出一个Excel表格的三列,可以用Series的name属性当作列名, index当作每一行的行号;如果index不相同,取index的并集,没有数值的地方给个NaN
s1 = pd.Series([1, 2, 3], index=[1, 2, 3], name='A')
s1 = pd.Series([10, 20, 30], index=[1, 2, 3], name='B')
s1 = pd.Series([100, 200 300], index=[1, 2, 3], name='C')
df = pd.DataFrame({s1.name:s1, s2.name:s2, s3.name:s3}) # 用的最多的方式, 一列一列的
如果不以字典方式构造excel表格的话,直接只用Series序列构造,会出现以Series的name当作行号,一行一行的生成:
df = pd.DataFrame(s1, s2, s3) # 一行一行的
10. 修改一个值或者修改n个值(自动填充)
先找到Series再改Series中的元素:
import pandas as pd
from datetime import date, timedelta
def add_month():
yd = md // 12
m = d.month + md % 12
if m != 12
yd += m // 12
m = m % 12
return date(d.year+yd, m, d.day)
books = pd.read_excel("d:/book.xlsx", skiprows=3, usecols="C:F", index_col=None,
dtype={'name':str, 'id':str, 'date':str})
for i in books.index:
if type(books['name'].at[i]) != int:
books['name'].at[i]
books['id'] = 'yes' if i & 1 else 'No'
books['date'].at[i] = add_month(start, i)
books.set_index("id")
第二种方法是直接在DataFrame中改对应的单元格
for i in books.index:
books.at[i, 'date'] = 12
11. 函数填充
需求,在excel表格中,我们可以根据前面几列的数据按照某种函数进行计算,再添加到指定表格中,这里用程序完成:
books = pd.read_excel('d:/bookss.xlsx', index_col='ID')
books["Price"] = books["ListPrice"] * books["Discount"]
print(books)
第二种情况就是DataFrame中的每一列Series有一个apply(function)方法,给function传入一个函数可以对这一Series进行函数处理:
books = pd.read_excel('d:/bookss.xlsx', index_col='ID')
books["ListPrice"] = books["ListPrice"].apply(lambda x: x+2)
12. 给数据排序
使用DataFrame的sort_values()方法进行排序,按照by参数排序, inplace就地, ascending=False是降序;
如果我们想要先按照某列排序,再按某列排序,by后面可以跟一个列表,ascending也可以给个列表,两种顺序;
products = pd.read_excel('d:/List.xlsx, index_col='ID')
products.sort_values(by='Price', inplace=True, ascending=False)
products.sort_values(by=['Worthy', 'Price'], inplace=True, ascending=[True, False])
13. 数据筛选、过滤
很多时候,我们想要展现的数据,是全体的数据,我们只需要展示其中的一部分
使用loc属性
loc属性介绍
# DataFrame对象有loc属性,loc属性可以通过bool值返回从DataFrame对象中筛选出来的DataFrame对象
# 先创建一个DataFrame对象
lst1 = pd.Series(["tom", "jerry", "jacky", "wayne", "justin"])
lst2 = pd.Series([35, 24, 16, 45, 26])
lst3 = pd.Series([98, 95, 86, 73, 99])
students = pd.DataFrame({"name":lst1, "age":lst2, "grade":lst3})
print(students)
name age grade
0 tom 35 98
1 jerry 24 95
2 jacky 16 86
3 wayne 45 73
4 justin 26 99
# 定义两个函数来判断成绩是否是优秀,年龄是否年轻, 返回的都是bool值
def young_age(age):
return age < 30
def good_grade(grade):
return grade > 85
# 通过DataFrame对象的apply方法,对students的元素进行判断取bool值,为了不污染原数据,可以使用拷贝
cp = students.copy()
cp["grade"] = cp["grade"].apply(good_grade)
cp["age"] = cp["age"].apply(young_age)
print(cp)
name age grade
0 tom False True
1 jerry True True
2 jacky True True
3 wayne False False
4 justin True True
# 这时候我们可以清晰的看到age和grade都已经被判断为了是否是young,是否是good
# 有了这一步,下一步我们就可以用bool在loc属性中进行筛选元素了
students = students.loc[students["age"].apply(young_age)].loc[students["grade"].apply(good_grade)]]
这里就清晰的看出来我们两次使用loc属性对数据进行清洗,然后重新赋值给了students变量
print(students)
name age grade
1 jerry 24 95
2 jacky 16 86
4 justin 26 99
# 这里就得到了清洗后的数据,即我们要展示的数据,既年轻,成绩又优秀的同学
下面这个同理, 不过students[“age”]和students[“grade”]还可以换成students.age和students.grade来访问对应的列Series:
import pandas as pd
def age_18_to_30(age):
return 18 <= age < 30 # 判断一个年龄是否是18到30之间
def level_a(grade):
return 85 <= grade <= 100 # 判断一个成绩是否是优秀
students = pd.read_excel("d:/students.xlsx", index_col="ID")
students = students.loc[ students["Age"].apply(age_to_30) ].loc[ students["score"].apply(level_a) ]
pandas处理excel的常用方法技巧(上)的更多相关文章
- 深入理解pandas读取excel,txt,csv文件等命令
pandas读取文件官方提供的文档 在使用pandas读取文件之前,必备的内容,必然属于官方文档,官方文档查阅地址 http://pandas.pydata.org/pandas-docs/versi ...
- Python利用pandas处理Excel数据的应用
Python利用pandas处理Excel数据的应用 最近迷上了高效处理数据的pandas,其实这个是用来做数据分析的,如果你是做大数据分析和测试的,那么这个是非常的有用的!!但是其实我们平时在做 ...
- C 语言常用方法技巧
C语言常用方法技巧 *:first-child { margin-top: 0 !important; } body>*:last-child { margin-bottom: 0 !impor ...
- Python读写EXCEL文件常用方法大全
前言 python读写excel的方式有很多,不同的模块在读写的讲法上稍有区别,这里我主要介绍几个常用的方式. 用xlrd和xlwt进行excel读写: 用openpyxl进行excel读写: 用pa ...
- Python Pandas操作Excel
Python Pandas操作Excel 前情提要 ☟ 本章使用的 Python3.6 Pandas==0.25.3 项目中需要用到excel的文件字段太多 考虑到后续字段命名的变动以及中文/英文/日 ...
- 【Python自动化Excel】pandas处理Excel数据的基本流程
这里所说的pandas并不是大熊猫,而是Python的第三方库.这个库能干嘛呢?它在Python数据分析领域可是无人不知.无人不晓的.可以说是Python世界中的Excel. pandas库处理数据相 ...
- 深度学习与CV教程(6) | 神经网络训练技巧 (上)
作者:韩信子@ShowMeAI 教程地址:http://www.showmeai.tech/tutorials/37 本文地址:http://www.showmeai.tech/article-det ...
- 学习excel的使用技巧复制一列文本成新列去重
学习excel的使用技巧复制一列文本成新列去重 其实比较简单的技巧 知道了就会 不知道就比较麻烦 直接复制到一列 找到 数据选项 删除重复项
- 51-python3 pandas读写excel
转载自:https://blog.csdn.net/brink_compiling/article/details/76890198?locationNum=7&fps=1 0. 前言Pyth ...
随机推荐
- python编程基础之二十
字符串的其他常用方法: ord(char) # 返回char字符对应的码值,可以是中文字符 chr(x) # 输入一个unicode码,返回对应的字符 eval(str) # 将str 中的内容 ...
- Cheapest Palindrome POJ - 3280
Keeping track of all the cows can be a tricky task so Farmer John has installed a system to automate ...
- [Luogu3797] 妖梦斩木棒
题目背景 妖梦是住在白玉楼的半人半灵,拥有使用剑术程度的能力. 题目描述 有一天,妖梦正在练习剑术.地面上摆放了一支非常长的木棒,妖梦把它们切成了等长的n段.现在这个木棒可以看做由三种小段构成,中间的 ...
- SpringBoot系列:Spring Boot集成Spring Cache,使用RedisCache
前面的章节,讲解了Spring Boot集成Spring Cache,Spring Cache已经完成了多种Cache的实现,包括EhCache.RedisCache.ConcurrentMapCac ...
- 实践开发:vue框架重点知识分析
一个VUE项目的主树: assets文件夹是放静态资源: components是放组件: router是定义路由相关的配置; view视图: app.vue是一个应用主组件: main.js是入口文件 ...
- TCC推导过程
svn 账号 yuanzn 密码:TCH5mb 项目分层 MapperDao 数据校验 throw new CloudBaseRuntimeException Helper 数据转换 manager ...
- Python之文件的使用
文件概述 读写文件是最常见的IO操作.Python内置了读写文件的函数,用法和C是兼容的. 读写文件前,我们先必须了解一下,在磁盘上读写文件的功能都是由操作系统提供的,现代操作系统不允许普通的程序直接 ...
- 『嗨威说』算法设计与分析 - 动态规划思想小结(HDU 4283 You Are the One)
本文索引目录: 一.动态规划的基本思想 二.数字三角形.最大子段和(PTA)递归方程 三.一道区间动态规划题点拨升华动态规划思想 四.结对编程情况 一.动态规划的基本思想: 1.1 基本概念: 动态规 ...
- 玩转OneNET物联网平台之简介
授人以鱼不如授人以渔,目的不是为了教会你具体项目开发,而是学会学习的能力.希望大家分享给你周边需要的朋友或者同学,说不定大神成长之路有博哥的奠基石... QQ技术互动交流群:ESP8266&3 ...
- Opentracing + Uber Jaeger 全链路灰度调用链,Nepxion Discovery
当网关和服务在实施全链路分布式灰度发布和路由时候,我们需要一款追踪系统来监控网关和服务走的是哪个灰度组,哪个灰度版本,哪个灰度区域,甚至监控从Http Header头部全程传递的灰度规则和路由策略.这 ...