说实话这道题没有A掉,不过所有的思路都是我自己想的,我觉得这个思路真的很棒很棒很棒的。

首先这个题的题面描述告诉我这种运算有封闭性,满足结合律和交换率,那么其实这个东西是个群运算了,而且这个群有单位元和逆元,那我们就可以针对题中的运算制造逆运算。

然后考虑树桶dp。

我们发现当所有的x都是0的时候,可以直接简单的换根dp。

然而x不为0的时候我们就必须对路径上的每个点做一个反处理,让相应的点不能被同时加入路径。

首先考虑用线段树维护每个点的树桶。那么复杂度是$O(klogn)$的。

我们每次归并一个儿子就在线段树上打上相应的贡献。

然后发现因为对于每个点来说,他的父链必然不是敌人,那么我们考虑对于以每一个点为$lca$的路径的贡献。

那么其实我们固定了一条以当前这个lca为顶的链之后,所有的敌人的子树是确定的了,那么我们在线段树上ban掉这个子树(dfs序连续一段),然后在lca的子树区间中查询线段树,没有归并进来的儿子不被计算,计算的是当前这个还没有归并进来的儿子所形成的链和其他已经归并了的儿子的链组成的路径的贡献,把这个贡献*2就是这条路经正反向的贡献。

这样复杂度是$O(n^2klogn)$的。

考虑重链划分来优化。

用两种dfs,大的和小的,大的套小的。

我们先在大dfs中,大dfs他的重儿子然后不进行小dfs,在线段树上加入重儿子的贡献,之后遍历当前点的每一个轻儿子,先进行小dfs,按照上面那种套路来形成链,同时在线段树上查询。

我们发现漏了一部分的贡献,就是重儿子到他所在和重链的所有父辈节点的路径贡献没有计算,树剖复杂度是$O(log^2)$的,但是注意到重链只有一条,可以直接在线段树上查询这条重链从这个重儿子到链顶的贡献,*2即可。

注意到重儿子没有进行小dfs,也就是说他只进行了一次大dfs,是启发式合并的复杂度。

那么总复杂度是$O(nklog^2n)$

不能通过本题,不过我喜欢这个算法。

「刷题」xor的更多相关文章

  1. 「刷题」THUPC泛做

    刷了一下,写一下. T1. 天天爱射击 可以这样想. 我们二分一下每一块木板在什么时刻被击碎. 然后直接用主席树维护的话是\(O(nlog^2n)\)的. 会\(T\),而且是一分不给那种... 那么 ...

  2. 「刷题」JZPKIL

    这道反演题,真牛逼. 以下用$B$代表伯努利数,$l*g=f$代表狄利克雷卷积,先推式子. 对于给出的$n,x,y$求一百组数据的$ans$ $\begin{array}{rcl} ans & ...

  3. 「刷题」Triple

    正解是普通型母函数+FFT. 才学了多项式,做了一道比较好的题了. 首先有三个斧子被偷了. 我们考虑构造一种普通型母函数. 就是说一种多项式吧,我的理解. 系数是方案,下标,也就是所谓的元指数代表的是 ...

  4. 「刷题」GERALD07加强版

    是LCT了. 首先我们不知道联通块怎么数. 然后颓标签知道了是LCT. 那么考虑一下怎么LCT搞. 有一个很普遍的思路大家也应该都知道,就是如何求一个区间中某种颜色的个数. 这个可以很简单的用主席树来 ...

  5. 「刷题」可怜与STS

    又是一道假期望,我们发现一共有$ C_{2n}^m $种情况. 而$ \frac{(2n)!}{m!(2n-m)!}=C_{2n}^m $ 其实结果就是各个情况总伤害. 1.10分算法,爆搜10分. ...

  6. 「刷题」Color 群论

    这道题乍一看挺水的,直接$ Ploya $就可以了,可是再看看数据范围:n<=1e9 那就是有1e9种置换,这不歇比了. 于是考虑式子的优化. 首先证明,转i次的置换的每个循环结大小是 $ gc ...

  7. 「刷题」卡特兰数&prufer序列

    1.网格 转换模型,翻折容斥出解. 2.有趣的数列 抽象一下模型,把奇数项当作横坐标,偶数项当作纵坐标,就是从n*n矩阵左下角走到右上角并且每一步x<=y的方案数,发现是卡特兰数,关于gcd,可 ...

  8. 「刷题笔记」DP优化-状压-EX

    棋盘 需要注意的几点: 题面编号都是从0开始的,所以第1行实际指的是中间那行 对\(2^{32}\)取模,其实就是\(unsigned\ int\),直接自然溢出啥事没有 棋子攻击范围不会旋转 首先, ...

  9. 「刷题笔记」AC自动机

    自动AC机 Keywords Research 板子题,同luoguP3808,不过是多测. 然后多测不清空,\(MLE\)两行泪. 板子放一下 #include<bits/stdc++.h&g ...

随机推荐

  1. 《完美解决系列》Android5.0以上 Implicit intents with startService are not safe

    在Android6.0上,使用了以下代码: Intent intent = new Intent(); intent.setAction("xxx.server"); bindSe ...

  2. Pycharm 快捷键大全 2019.2.3

    在Pycharm中打开Help->Keymap Reference可查看默认快捷键帮助文档,文档为PDF格式,位于安装路径的help文件夹中,包含MAC操作系统适用的帮助文档. 下图为2019. ...

  3. mac下安装jmeter

    jmeter官网下载 双击解压 命令行进入/Users/yanguobin/apache-jmeter-5.1.1/bin目录下,输入sh jmeter即可启动 也可以 配置环境变量 vim ~/.b ...

  4. c#关于JWT跨域身份验证解决方案

    学习程序,不是记代码,而是学习一种思想,以及对代码的理解和思考. JSON Web Token(JWT)是目前最流行的跨域身份验证解决方案.为了网络应用环境间传递声明而执行的一种基于JSON的开发标准 ...

  5. jsonp与cors跨域解析

    1.浏览器的同源安全策略 没错,就是这家伙干的,浏览器只允许请求当前域的资源,而对其他域的资源表示不信任.那怎么才算跨域呢? 请求协议http,https的不同 域domain的不同 端口port的不 ...

  6. 【包教包会】Chrome拓展开发实践

    首发于微信公众号<前端成长记>,写于 2019.10.18 导读 有句老话说的好,好记性不如烂笔头.人生中,总有那么些东西你愿去执笔写下. 本文旨在把整个开发的过程和遇到的问题及解决方案记 ...

  7. repr() Vs str()

    在python中,将对象转换为字符串有两个内建函数: str Vs repr .str 是一个友好的,人们可读的字符串.repr 应该包含关于对象内容的详细信息(有时他们会返回相同的内容,例如整数). ...

  8. LSTM神经网络走读

      0设计概述 RNN梯度爆炸和消失比较严重,RNN隐层只有一个状态h记录短期记忆,增加一个长期记忆状态c似乎就可以解决问题.

  9. C#版ASP.NET Web API使用示例

    为更好更快速的上手Webapi设计模式的接口开发,本文详细解释了在Web API接口的开发过程中,我们可能会碰到各种各样的问题总结了这篇,希望对大家有所帮助. 1:在接口定义中确定MVC的get或者P ...

  10. 本月16日SpringBoot2.2发布,有哪些变化先知晓

    本月(2019年10月16日)Spring Boot 2.2已经正式发布了!在此篇文章中,将给大家介绍一下2.2版为大家带来了哪些重要的新变化.笔者用心书写,希望阅读完成之后转发关注,你的支持是我不竭 ...