题意翻译

在数轴上有 NNN 头牛,第 iii 头牛位于 xi(0≤xi≤109)x_i\:(0\le x_i\le 10^9)xi​(0≤xi​≤109) 。没有两头牛位于同一位置。
有两种牛:白牛和花斑牛。保证至少有一头白牛。你可以把白牛涂成花斑牛,不限数量,不限哪只。
找一段尽量长的区间,使得区间的两端点均有一头牛,且区间中白牛与花斑牛的数量相等。试求区间长度。

感谢 @Planet6174 的翻译

题目描述

FJ's N cows (2 <= N <= 100,000) are standing at various
positions along a long one-dimensional fence. The ith cow is standing at
position x_i (an integer in the range 0...1,000,000,000) and is either a
plain white cow or a spotted cow. No two cows occupy the same position,
and there is at least one white cow.

FJ wants to take a photo of a contiguous interval of cows for the
county fair, but in fairness to his different cows, he wants to ensure
there are equal numbers of white and spotted cows in the photo. FJ wants
to determine the maximum size of such a fair photo, where the size of a
photo is the difference between the maximum and minimum positions of
the cows in the photo.

To give himself an even better chance of taking a larger photo, FJ
has with him a bucket of paint that he can use to paint spots on an
arbitrary subset of his white cows of his choosing, effectively turning
them into spotted cows. Please determine the largest size of a fair
photo FJ can take, given that FJ has the option of painting some of his
white cows (of course, he does not need to paint any of the white cows
if he decides this is better).

输入输出格式

输入格式:

* Line 1: The integer N.

* Lines 2..1+N: Line i+1 contains x_i and either W (for a white cow) or S (for a spotted cow).

输出格式:

* Line 1: The maximum size of a fair photo FJ can take, after possibly painting some of his white cows to make them spotted.

输入输出样例

输入样例#1:
复制

5
8 W
11 S
3 W
10 W
5 S
输出样例#1: 复制

7

说明

There are 5 cows. One of them is a white cow at position 8, and so on.

FJ takes a photo of the cows from positions 3 to positions 10. There are 4 cows in this range -- 3 white and 1 spotted -- so he needs to paint one of the white cows to make it spotted.

题解:

  发现这个题目本质上是找一个区间,使得(白牛的数量-花牛的数量)%2==0,所以想到前缀和,记sum1为白牛的前缀和,sum2为花牛的前缀和。区间i,j合法只有区间设k=(sum1[i]-sum1[j-1])-(sum2[j-1]-sum2[j-1])。必须k>=0且k%2==0,给式子变一下形,就是k=sum1[i]-sum2[i]-(sum2[j-1]-sum1[j-1])。分类讨论sum1[i]-sum2[i]的奇偶性质,把sum2[j-1]-sum1[j-1]丢到两棵线段树里,维护sum2[j-1]-sum1[j-1]的最大值就可以判断区间何不合法,因为要枚举右端点,时间复杂度nlogn.

代码:

  

#include <cstdio>
#include <iostream>
#include <algorithm>
#include <cstring>
#include <cmath>
#include <iostream>
#define MAXN 104000
#define ll long long
#define RG register
using namespace std; struct tree{
int l,r,maxx;
}a[][MAXN*]; struct cow{
int pl,co;
void read(){
char x;
scanf("%d%c%c",&pl,&x,&x);
if(x=='W') co=;
else co=;
}
}b[MAXN]; int sum1[MAXN],sum2[MAXN];
int n; inline bool cmp(cow x,cow y){
if(x.pl<y.pl) return ;
return ;
} int check(int x){
if(abs(x)%==) return ;
else return ;
} int query(int xv,int l,int r,int id,int x){
int L=a[id][xv].l,R=a[id][xv].r,mid=(L+R)/;
if(L==R) return L;
if(a[id][xv*].maxx+x>=) return query(xv*,l,mid,id,x);
else if(a[id][xv*+].maxx+x>=) return query(xv*+,mid+,r,id,x);
else return ;
} void insert(int xv,int ps,int zhi,int id){
int l=a[id][xv].l,r=a[id][xv].r,mid=(l+r)/;
if(l==r){
a[id][xv].maxx=zhi;
return;
}
if(ps<=mid) insert(xv*,ps,zhi,id);
else insert(xv*+,ps,zhi,id);
a[id][xv].maxx=max(a[id][xv*].maxx,a[id][xv*+].maxx);
} void work(){
int ans=;
for(int i=;i<=n;i++){
int hh=sum1[i]-sum2[i],l=;int id=check(hh);
if((sum1[i]-sum2[i]+sum2[]-sum1[])%==&&sum1[i]-sum2[i]+sum2[]-sum1[]>=)
ans=max(ans,b[i].pl-b[].pl);
if(hh+a[id][].maxx>=)
l=query(,,i,id,hh);
if(l)
ans=max(ans,b[i].pl-b[l+].pl);
hh=sum2[i]-sum1[i];id=check(hh);
insert(,i,sum2[i]-sum1[i],id);
}
printf("%d",ans);
} void build(int id,int l,int r){
if(l==r){
a[][id].l=a[][id].l=l,a[][id].r=a[][id].r=r;
a[][id].maxx=a[][id].maxx=-(<<);
return;
}
a[][id].maxx=a[][id].maxx=-(<<);
a[][id].l=a[][id].l=l,a[][id].r=a[][id].r=r;
int mid=(l+r)/;
build(id*,l,mid),build(id*+,mid+,r);
} int main()
{
scanf("%d",&n);
for(int i=;i<=n;i++) b[i].read();
sort(b+,b+n+,cmp);
for(int i=;i<=n;i++) if(b[i].co==) sum1[i]=sum1[i-]+,sum2[i]=sum2[i-]; else sum2[i]=sum2[i-]+,sum1[i]=sum1[i-];
build(,,n);
work();
return ;
}

P3105 [USACO14OPEN]公平的摄影Fair Photography的更多相关文章

  1. P3105 [USACO14OPEN]公平的摄影(正解是乱搞,我却二分了)(+二分答案总结)

    照例化简题意: 给定一个01区间,可以把0改成1,问其中最长的01数量相等的区间长度. 额很容易想到前缀和,把w弄成1,h弄成-1,然后求前缀和,然后乱搞就行了. 但是一直不太会乱搞的我却直接想到了二 ...

  2. BZOJ3540: [Usaco2014 Open]Fair Photography

    3540: [Usaco2014 Open]Fair Photography Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 72  Solved: 29 ...

  3. RabbitMQ简单应用の公平分发(fair dipatch)

    公平分发(fair dipatch)和轮询分发其实基本一致,只是每次分发的机制变了,由原来的平均分配到现在每次只处理一条消息 1.MQ连接工厂类Connection package com.mmr.r ...

  4. bzoj 3540: [Usaco2014 Open]Fair Photography

    3540: [Usaco2014 Open]Fair Photography Description FJ's N cows (2 <= N <= 100,000) are standin ...

  5. [BZOJ3535][Usaco2014 Open]Fair Photography

    [BZOJ3535][Usaco2014 Open]Fair Photography 试题描述 FJ's N cows (1 <= N <= 100,000) are standing a ...

  6. RabbitMQ学习第二记:工作队列的两种分发方式,轮询分发(Round-robin)和 公平分发(Fair dispatch)

    1.什么是RabbitMQ工作队列 我们在应用程序使用消息系统时,一般情况下生产者往队列里插入数据时速度是比较快的,但是消费者消费数据往往涉及到一些业务逻辑处理导致速度跟不上生产者生产数据.因此如果一 ...

  7. 解题:USACO14OPEN Fair Photography

    题面 有点像JRY的那道序列题,大概是统计题的经典套路? 先说无修改的:将白奶牛记为$-1$,花奶牛记为$1$,然后做前缀和统计某个前缀和$sum$第一次出现的位置,之后再出现就统计答案.对于修改(将 ...

  8. Fair Photography

    题目大意: 给出直线上N个点的位置和颜色(0或1),求最大的区间,使得区间内0的个数大于等于1的个数且0的个数减去1的个数为偶数. 解题过程: 1.先贴个lsdsjy大牛的线段树的做法:http:// ...

  9. [Usaco2014 Open]Gold Fair Photography(hash)

    最近做了usaco2014 open的金组,果然美帝的题还是没有太简单啊QAQ,被每年的月赛骗了QAQ 不过话说官方题解真心棒(虽然英文的啃得好艰难,我英语渣你们别鄙视我= =),标程超级优美QAQ ...

随机推荐

  1. C#开发BIMFACE系列22 服务端API之获取模型数据7:获取多个模型的楼层信息

    系列目录     [已更新最新开发文章,点击查看详细] 在<C#开发BIMFACE系列21 服务端API之获取模型数据6:获取单模型的楼层信息>中介绍获取单个模型的所有楼层信息.某些场景下 ...

  2. 关于git使用的几点理解

    1.git为分布式的版本控制系统,有远程仓库和本地仓库,远程仓库和本地仓库之间建立关联关系后,可将本地仓库的更新push(相当于是内容同步)到远程仓库进行保存,远程仓库的作用相当于一个最终代码备份的地 ...

  3. git 中文乱码-一次被坑经历

    git log和gitcommit中文出现乱码,花了大半天的时间试了网上的各种方法,还是搞不定. 只好放大招. 卸载软件后重装,还是不行.然后git config --list 发现一些奇怪的配置信息 ...

  4. MD5字符串加密

    MD5字符串加密 Message Digest Algorithm MD5(中文名为消息摘要算法第五版)为计算机安全领域广泛使用的一种散列函数,用以提供消息的完整性保护.该算法的文件号为RFC 132 ...

  5. WEB应用中普通java代码如何读取资源文件

    首先: 资源文件分两种:后缀.xml文件和.properties文件 .xml文件:当数据之间有联系时用.xml .properties文件:当数据之间没有联系时用.properties 正题:   ...

  6. Winform中实现更改DevExpress的RadioGroup的选项时更改其他控件(TextEdit、ColorPickEdit)的值

    场景 Winform中实现读取xml配置文件并动态配置ZedGraph的RadioGroup的选项: https://blog.csdn.net/BADAO_LIUMANG_QIZHI/article ...

  7. java接收控制台输入

    java控制台输入语句: Scanner sc = new Scanner(System.in); 通过一个变量,例如 int r; r = sc.nextInt();   例子: public st ...

  8. 判断dom原始是否在可视区域内

    isElementInViewport (el, offset = 0) { const box = el.getBoundingClientRect(), top = (box.top >= ...

  9. java.nio.ByteBuffer中的flip()、rewind()、compact()等方法的使用和区别

    java.nio.ByteBuffer 1. ByteBuffer中的参数position.limit.capacity.mark含义: position:表示当前指针的位置(下一个要操作的数据元素的 ...

  10. Java StringTokenizer 类使用方法

    Java StringTokenizer 属于 java.util 包,用于分隔字符串. StringTokenizer 构造方法: 1. StringTokenizer(String str) :构 ...