[DP]最长递增子序列
#include <iostream>
#include <limits.h>
#include <vector>
#include <algorithm>
using namespace std;
//获取最长递增子序列的递增数组
vector<int> getdp1(vector<int> arr) {
vector<int> dp(arr.size());
for (int i = 0; i < int(arr.size()); i ++) {
dp[i] = 1;
for (int j = 0; j < i; j ++) {
if (arr[i] > arr[j])
dp[i] = max(dp[i], dp[j] + 1);
}
}
return dp;
}
vector<int> getdp2(vector<int> arr) {
int right = 0;
int arr_len = int(arr.size());
int ends[arr_len];
int dp[arr_len];
ends[0] = arr[0];
dp[0] = 1;
for (int i = 1; i < arr_len; i ++) {
//二分查找ends
int l = 0;
int r = right;
while (l <= r) {
int mid = (l + r) >> 1;
if (arr[i] > ends[mid])
l = mid + 1;
else
r = mid - 1;
}
}
}
// 从dp数组中逆序还原出决策路径
vector<int> generateLIS(vector<int> dp, vector<int> arr) {
vector<int>::iterator maxPosition = max_element(dp.begin(), dp.end()); //algorithm中求vector最大值的函数
int maxIndex = maxPosition - dp.begin();
int maxNum = *maxPosition;
vector<int> res;
res.push_back(arr[maxIndex]);
int tmpNum = maxNum;
for (int i = maxIndex - 1; i >= 0; i --) {
if (dp[i] == tmpNum - 1) {
res.push_back(arr[i]);
tmpNum -= 1;
} else continue;
}
reverse(res.begin(), res.end());
return res;
}
int main()
{
vector<int> test = {2, 1, 5, 3, 6, 4, 8, 9, 7};
vector<int> dp = getdp1(test);
vector<int> lis = generateLIS(dp, test);
// cout<<"LIS"<<lis.size()<<endl;
for (auto c: lis)
cout<<c<<endl;
return 0;
}
[DP]最长递增子序列的更多相关文章
- HDU-1160-FatMouse's Speed(DP, 最长递增子序列)
链接: https://vjudge.net/problem/HDU-1160 题意: FatMouse believes that the fatter a mouse is, the faster ...
- poj 1631 Bridging signals (二分||DP||最长递增子序列)
Bridging signals Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 9234 Accepted: 5037 ...
- HDU 1069 dp最长递增子序列
B - Monkey and Banana Time Limit:1000MS Memory Limit:32768KB 64bit IO Format:%I64d & %I6 ...
- dp之最长递增子序列模板poj3903
最长递增子序列,Longest Increasing Subsequence 下面我们简记为 LIS.排序+LCS算法 以及 DP算法就忽略了,这两个太容易理解了. 假设存在一个序列d[1..9] = ...
- 动态规划(DP),最长递增子序列(LIS)
题目链接:http://poj.org/problem?id=2533 解题报告: 状态转移方程: dp[i]表示以a[i]为结尾的LIS长度 状态转移方程: dp[0]=1; dp[i]=max(d ...
- Longest Increasing Subsequences(最长递增子序列)的两种DP实现
一.本文内容 最长递增子序列的两种动态规划算法实现,O(n^2)及O(nlogn). 二.问题描述 最长递增子序列:给定一个序列,从该序列找出最长的 升序/递增 子序列. 特点:1.子序列不要 ...
- 求解最长递增子序列(LIS) | 动态规划(DP)+ 二分法
1.题目描述 给定数组arr,返回arr的最长递增子序列. 2.举例 arr={2,1,5,3,6,4,8,9,7},返回的最长递增子序列为{1,3,4,8,9}. 3.解答 ...
- [程序员代码面试指南]最长递增子序列(二分,DP)
题目 例:arr=[2,1,5,3,6,4,8,9,7] ,最长递增子序列为1,3,4,8,9 题解 step1:找最长连续子序列长度 dp[]存以arr[i]结尾的情况下,arr[0..i]中的最长 ...
- 51nod-1134 最长递增子序列,用线段树将N^2的dp降到NlogN
题目链接 给出长度为N的数组,找出这个数组的最长递增子序列.(递增子序列是指,子序列的元素是递增的) 例如:5 1 6 8 2 4 5 10,最长递增子序列是1 2 4 5 10. Input 第1行 ...
随机推荐
- Netty服务端启动过程相关源码分析
1.Netty 是怎么创建服务端Channel的呢? 我们在使用ServerBootstrap.bind(端口)方法时,最终调用其父类AbstractBootstrap中的doBind方法,相关源码如 ...
- 浏览器输入URL到返回页面的全过程
[问题描述] 在浏览器输入www.baidu.com,然后,浏览器显示相应的百度页面,这个过程究竟发生了什么呢? [第一步,解析域名,找到主机] 正常情况下,浏览器会缓存DNS一段时间,一般2分钟到3 ...
- 什么是Singleton?
Singleton:在Java中即指单例设计模式,它是软件开发中最常用的设计模式之一. 单:指唯一 例:指实例 单例设计模式,即某个类在整个系统中只能有一个实例对象可被获取和使用的代码模式. 要点: ...
- Spark 系列(八)—— Spark SQL 之 DataFrame 和 Dataset
一.Spark SQL简介 Spark SQL 是 Spark 中的一个子模块,主要用于操作结构化数据.它具有以下特点: 能够将 SQL 查询与 Spark 程序无缝混合,允许您使用 SQL 或 Da ...
- alluxio2.0特性-预览
项目地址 https://github.com/Alluxio/alluxio/tree/branch-2.0-preview 2.0版本-构思和设计 支持超大规模数据工作负载 Alluxio作为计算 ...
- JavaWeb——Servlet开发3
1.使用初始化参数配置应用程序 初始化参数的方式有两种 在Web.xml文件中使用<context-param>标签声明上下文初始化参数 <context-param> < ...
- 洛谷 P4124 [CQOI2016]手机号码
题意简述 求l~r之间不含前导零,至少有三个相邻的相同数字,不同时含有4和8的11位正整数的个数 题解思路 数位DP,注意在l,r位数不够时补至11位 代码 #include <cstdio&g ...
- java线程池,工作窃取算法
前言 在上一篇<java线程池,阿里为什么不允许使用Executors?>中我们谈及了线程池,同时又发现一个现象,当最大线程数还没有满的时候耗时的任务全部堆积给了单个线程, 代码如下: T ...
- Linux Web集群架构详细(亲测可用!!!)
注意:WEB服务器和数据库需要分离,同时WEB服务器也需要编译安装MySQL. 做集群架构的重要思想就是找到主干,从主干区域向外延展. WEB服务器: apache nginx 本地做三个产品 de ...
- springBoot配置elasticsearch搜索
1.本地安装elasticsearch服务,具体过程见上一篇文章(安装和配置elasticsearch服务集群) 2.修改项目中pom文件,引入搜索相关jar包 <!-- elasticsear ...