Ignatius and the Princess III

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 24975    Accepted Submission(s): 17253

Problem Description
"Well, it seems the first problem is too easy. I will let you know how foolish you are later." feng5166 says.

"The second problem is, given an positive integer N, we define an equation like this:
  N=a[1]+a[2]+a[3]+...+a[m];
  a[i]>0,1<=m<=N;
My question is how many different equations you can find for a given N.
For example, assume N is 4, we can find:
  4 = 4;
  4 = 3 + 1;
  4 = 2 + 2;
  4 = 2 + 1 + 1;
  4 = 1 + 1 + 1 + 1;
so the result is 5 when N is 4. Note that "4 = 3 + 1" and "4 = 1 + 3" is the same in this problem. Now, you do it!"

 
Input
The input contains several test cases. Each test case contains a positive integer N(1<=N<=120) which is mentioned above. The input is terminated by the end of file.
 
Output
For each test case, you have to output a line contains an integer P which indicate the different equations you have found.
 
Sample Input
4
10
20
 
Sample Output
5
42
627
 
Author
Ignatius.L
 
Recommend
We have carefully selected several similar problems for you:  1171 1085 1398 2152 1709 
 
问整数n有多少种拆分可能,那也就是求x^n的系数
所以我们直接用母函数求x^n的系数就行
#include <map>
#include <set>
#include <stack>
#include <cmath>
#include <queue>
#include <cstdio>
#include <vector>
#include <string>
#include <cstring>
#include <iterator>
#include <iostream>
#include <algorithm>
#define debug(a) cout << #a << " " << a << endl
using namespace std;
const int maxn = 2*1e2 + 10;
const int mod = 10000;
typedef long long ll;
int main() {
ios::sync_with_stdio(0),cin.tie(0),cout.tie(0);
ll n;
while( cin >> n ) {
ll a[maxn], b[maxn];
for( ll i = 0; i <= n; i ++ ) {
a[i] = 1, b[i] = 0;
}
for( ll i = 2; i <= n; i ++ ) { //最低是从2开始划分
for( ll j = 0; j <= n; j ++ ) {
for( ll k = 0; k*i+j <= n; k ++ ) {
b[k*i+j] += a[j];
}
}
for( ll j = 0; j <= n; j ++ ) {
a[j] = b[j], b[j] = 0;
}
}
cout << a[n] << endl;
}
return 0;
}

  

hdu 1028 Ignatius and the Princess III 母函数的更多相关文章

  1. hdu 1028 Ignatius and the Princess III 简单dp

    题目链接:hdu 1028 Ignatius and the Princess III 题意:对于给定的n,问有多少种组成方式 思路:dp[i][j],i表示要求的数,j表示组成i的最大值,最后答案是 ...

  2. HDU 1028 Ignatius and the Princess III 整数的划分问题(打表或者记忆化搜索)

    传送门: http://acm.hdu.edu.cn/showproblem.php?pid=1028 Ignatius and the Princess III Time Limit: 2000/1 ...

  3. HDU 1028 Ignatius and the Princess III (母函数或者dp,找规律,)

    Ignatius and the Princess III Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K ...

  4. hdu 1028 Ignatius and the Princess III(DP)

    Ignatius and the Princess III Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K ...

  5. hdu 1028 Ignatius and the Princess III (n的划分)

    Ignatius and the Princess III Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K ...

  6. HDU 1028 Ignatius and the Princess III (生成函数/母函数)

    题目链接:HDU 1028 Problem Description "Well, it seems the first problem is too easy. I will let you ...

  7. HDU 1028 Ignatius and the Princess III (递归,dp)

    以下引用部分全都来自:http://blog.csdn.net/ice_crazy/article/details/7478802  Ice—Crazy的专栏 分析: HDU 1028 摘: 本题的意 ...

  8. HDU 1028 Ignatius and the Princess III (动态规划)

    题目链接:HDU 1028 Problem Description "Well, it seems the first problem is too easy. I will let you ...

  9. HDU 1028 Ignatius and the Princess III:dp or 母函数

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1028 题意: 给你一个正整数n,将n拆分成若干个正整数之和,问你有多少种方案. 注:"4 = ...

随机推荐

  1. JS 中获得根目录

    /*** * 获得根目录 * @returns */ function getRootPath() { var strFullPath = window.document.location.href; ...

  2. spring实战学习笔记(一)spring装配bean

    最近在学习spring boot 发现对某些注解不是很深入的了解.看技术书给出的实例 会很疑惑为什么要用这个注解? 这个注解的作用?有其他相同作用的注解吗?这个注解的运行机制是什么?等等 spring ...

  3. (数据科学学习手札66)在ubuntu服务器上部署shiny

    一.简介 shiny是R中专门用于开发轻量级web应用的框架,在本地写一个shiny应用并调用非常方便,但如果你希望你的shiny应用能够以远程的方式提供给更多人来使用,就需要将写好的shiny应用部 ...

  4. JVM总结(二)

    JVM总结(2)java内存区域.字节码执行引擎 1.内存区域 程序计数器:知道线程执行位置,保证线程切换后能恢复到正确的执行位置. 虚拟机栈:存栈帧.栈帧里存局部变量表.操作栈.动态连接.方法返回地 ...

  5. zookeeper基本知识入门(一)

    之前我们在搭建hadoop分布式环境的时候用到过Zookeeper注册hadoop服务.那么到底Zookeeper在分布式环境中发挥了什么作用呢,这次我们就来讨论这个问题. 在分布式系统中通常都会有多 ...

  6. 利用hash或history实现单页面路由

    目录 html代码 css代码 JavaScript代码 hash方式 history 方式 浏览器端代码 服务器端 在chrome(版本 70.0.3538.110)测试正常 编写涉及:css, h ...

  7. tomcat和weblogic发布时,jar包内资源文件的读取路径问题

    问题场景: 本地使用的是tomcat作为发布容器,应用启动后一切正常: 发布测试环境服务器使用weblogic作为发布容器,发布后File类读取文件无法找到文件(路径错误). 问题原因: tomcat ...

  8. Flutter学习笔记(20)--FloatingActionButton、PopupMenuButton、SimpleDialog、AlertDialog、SnackBar

    如需转载,请注明出处:Flutter学习笔记(20)--FloatingActionButton.PopupMenuButton.SimpleDialog.AlertDialog.SnackBar F ...

  9. Kaggle比赛(二)House Prices: Advanced Regression Techniques

    房价预测是我入门Kaggle的第二个比赛,参考学习了他人的一篇优秀教程:https://www.kaggle.com/serigne/stacked-regressions-top-4-on-lead ...

  10. GUID做主键真的合适吗

    在一个分布式环境中,我们习惯使用GUID做主键,来保证全局唯一,然后,GUID做主键真的合适吗? 其实GUID做主键本身没有问题,微软的很多项目自带DB都是使用GUID做主键的,显然,这样做是没有问题 ...