Ignatius and the Princess III

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 24975    Accepted Submission(s): 17253

Problem Description
"Well, it seems the first problem is too easy. I will let you know how foolish you are later." feng5166 says.

"The second problem is, given an positive integer N, we define an equation like this:
  N=a[1]+a[2]+a[3]+...+a[m];
  a[i]>0,1<=m<=N;
My question is how many different equations you can find for a given N.
For example, assume N is 4, we can find:
  4 = 4;
  4 = 3 + 1;
  4 = 2 + 2;
  4 = 2 + 1 + 1;
  4 = 1 + 1 + 1 + 1;
so the result is 5 when N is 4. Note that "4 = 3 + 1" and "4 = 1 + 3" is the same in this problem. Now, you do it!"

 
Input
The input contains several test cases. Each test case contains a positive integer N(1<=N<=120) which is mentioned above. The input is terminated by the end of file.
 
Output
For each test case, you have to output a line contains an integer P which indicate the different equations you have found.
 
Sample Input
4
10
20
 
Sample Output
5
42
627
 
Author
Ignatius.L
 
Recommend
We have carefully selected several similar problems for you:  1171 1085 1398 2152 1709 
 
问整数n有多少种拆分可能,那也就是求x^n的系数
所以我们直接用母函数求x^n的系数就行
#include <map>
#include <set>
#include <stack>
#include <cmath>
#include <queue>
#include <cstdio>
#include <vector>
#include <string>
#include <cstring>
#include <iterator>
#include <iostream>
#include <algorithm>
#define debug(a) cout << #a << " " << a << endl
using namespace std;
const int maxn = 2*1e2 + 10;
const int mod = 10000;
typedef long long ll;
int main() {
ios::sync_with_stdio(0),cin.tie(0),cout.tie(0);
ll n;
while( cin >> n ) {
ll a[maxn], b[maxn];
for( ll i = 0; i <= n; i ++ ) {
a[i] = 1, b[i] = 0;
}
for( ll i = 2; i <= n; i ++ ) { //最低是从2开始划分
for( ll j = 0; j <= n; j ++ ) {
for( ll k = 0; k*i+j <= n; k ++ ) {
b[k*i+j] += a[j];
}
}
for( ll j = 0; j <= n; j ++ ) {
a[j] = b[j], b[j] = 0;
}
}
cout << a[n] << endl;
}
return 0;
}

  

hdu 1028 Ignatius and the Princess III 母函数的更多相关文章

  1. hdu 1028 Ignatius and the Princess III 简单dp

    题目链接:hdu 1028 Ignatius and the Princess III 题意:对于给定的n,问有多少种组成方式 思路:dp[i][j],i表示要求的数,j表示组成i的最大值,最后答案是 ...

  2. HDU 1028 Ignatius and the Princess III 整数的划分问题(打表或者记忆化搜索)

    传送门: http://acm.hdu.edu.cn/showproblem.php?pid=1028 Ignatius and the Princess III Time Limit: 2000/1 ...

  3. HDU 1028 Ignatius and the Princess III (母函数或者dp,找规律,)

    Ignatius and the Princess III Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K ...

  4. hdu 1028 Ignatius and the Princess III(DP)

    Ignatius and the Princess III Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K ...

  5. hdu 1028 Ignatius and the Princess III (n的划分)

    Ignatius and the Princess III Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K ...

  6. HDU 1028 Ignatius and the Princess III (生成函数/母函数)

    题目链接:HDU 1028 Problem Description "Well, it seems the first problem is too easy. I will let you ...

  7. HDU 1028 Ignatius and the Princess III (递归,dp)

    以下引用部分全都来自:http://blog.csdn.net/ice_crazy/article/details/7478802  Ice—Crazy的专栏 分析: HDU 1028 摘: 本题的意 ...

  8. HDU 1028 Ignatius and the Princess III (动态规划)

    题目链接:HDU 1028 Problem Description "Well, it seems the first problem is too easy. I will let you ...

  9. HDU 1028 Ignatius and the Princess III:dp or 母函数

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1028 题意: 给你一个正整数n,将n拆分成若干个正整数之和,问你有多少种方案. 注:"4 = ...

随机推荐

  1. Spring中FactoryBean的作用和实现原理

    BeanFactory与FactoryBean,相信很多刚翻看Spring源码的同学跟我一样很好奇这俩货怎么长得这么像,分别都是干啥用的.BeanFactory是Spring中Bean工厂的顶层接口, ...

  2. ubuntu下借助qt creator创建属于自己的共享库

    简介: 在 Windows 上,共享库由 .dll 表示:在 Linux 上,由 .so 表示. Shared Library的优势 共享库,又称动态库或so文件,顾名思义,它可以在可执行文件启动时加 ...

  3. Redis 学习笔记(篇七):Redis 持久化

    因为 Redis 是内存数据库,它将自己的数据储存在内存里面,所以如果不想办法将储存在内存中的数据库状态保存到磁盘里面,那么一旦服务器进程退出,服务器中的数据也将会丢失,为了解决这个问题,Redis ...

  4. Apache Flink 1.9 重大特性提前解读

    今天在 Apache Flink meetup ·北京站进行 Flink 1.9 重大新特性进行了讲解,两位讲师分别是 戴资力/杨克特,zhisheng 我也从看完了整个 1.9 特性解读的直播,预计 ...

  5. 如何思考博弈dp

    两个人的规则是否一致 若仅仅是先后的差别 我们可用dp解决一般思考一个子状态 对于当前的那个状态 我们进行什么样的操作 已知什么

  6. js 共有和私有

    //共有 var SunHang = function(){ var name = "ssss"; this.name = "hhhhh"; function ...

  7. 0x02 递推与递归

    [例题]CH0301 递归实现指数型枚举 #include <iostream> #include <cstdio> #include <algorithm> #i ...

  8. python多线程同步实例分析

    进程之间通信与线程同步是一个历久弥新的话题,对编程稍有了解应该都知道,但是细说又说不清.一方面除了工作中可能用的比较少,另一方面就是这些概念牵涉到的东西比较多,而且相对较深.网络编程,服务端编程,并发 ...

  9. Go中的字符串使用----strings和strconv

    Go中的字符串操作 字符串是工作中最常用的,值得我们专门的练习一下.在Go中使用strings包来操作字符串,这也是内置的包哈,不像Java中要么手写,要么引入common-lang 或者 别的第三方 ...

  10. 自定义FutureTask实现

    FutureTask FutureTask是Future的实现,用来异步任务的获取结果,可以启动和取消异步任务,查询异步任务是否计算结束以及获取最终的异步任务的结果.通过get()方法来获取异步任务的 ...