Ignatius and the Princess III

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 24975    Accepted Submission(s): 17253

Problem Description
"Well, it seems the first problem is too easy. I will let you know how foolish you are later." feng5166 says.

"The second problem is, given an positive integer N, we define an equation like this:
  N=a[1]+a[2]+a[3]+...+a[m];
  a[i]>0,1<=m<=N;
My question is how many different equations you can find for a given N.
For example, assume N is 4, we can find:
  4 = 4;
  4 = 3 + 1;
  4 = 2 + 2;
  4 = 2 + 1 + 1;
  4 = 1 + 1 + 1 + 1;
so the result is 5 when N is 4. Note that "4 = 3 + 1" and "4 = 1 + 3" is the same in this problem. Now, you do it!"

 
Input
The input contains several test cases. Each test case contains a positive integer N(1<=N<=120) which is mentioned above. The input is terminated by the end of file.
 
Output
For each test case, you have to output a line contains an integer P which indicate the different equations you have found.
 
Sample Input
4
10
20
 
Sample Output
5
42
627
 
Author
Ignatius.L
 
Recommend
We have carefully selected several similar problems for you:  1171 1085 1398 2152 1709 
 
问整数n有多少种拆分可能,那也就是求x^n的系数
所以我们直接用母函数求x^n的系数就行
#include <map>
#include <set>
#include <stack>
#include <cmath>
#include <queue>
#include <cstdio>
#include <vector>
#include <string>
#include <cstring>
#include <iterator>
#include <iostream>
#include <algorithm>
#define debug(a) cout << #a << " " << a << endl
using namespace std;
const int maxn = 2*1e2 + 10;
const int mod = 10000;
typedef long long ll;
int main() {
ios::sync_with_stdio(0),cin.tie(0),cout.tie(0);
ll n;
while( cin >> n ) {
ll a[maxn], b[maxn];
for( ll i = 0; i <= n; i ++ ) {
a[i] = 1, b[i] = 0;
}
for( ll i = 2; i <= n; i ++ ) { //最低是从2开始划分
for( ll j = 0; j <= n; j ++ ) {
for( ll k = 0; k*i+j <= n; k ++ ) {
b[k*i+j] += a[j];
}
}
for( ll j = 0; j <= n; j ++ ) {
a[j] = b[j], b[j] = 0;
}
}
cout << a[n] << endl;
}
return 0;
}

  

hdu 1028 Ignatius and the Princess III 母函数的更多相关文章

  1. hdu 1028 Ignatius and the Princess III 简单dp

    题目链接:hdu 1028 Ignatius and the Princess III 题意:对于给定的n,问有多少种组成方式 思路:dp[i][j],i表示要求的数,j表示组成i的最大值,最后答案是 ...

  2. HDU 1028 Ignatius and the Princess III 整数的划分问题(打表或者记忆化搜索)

    传送门: http://acm.hdu.edu.cn/showproblem.php?pid=1028 Ignatius and the Princess III Time Limit: 2000/1 ...

  3. HDU 1028 Ignatius and the Princess III (母函数或者dp,找规律,)

    Ignatius and the Princess III Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K ...

  4. hdu 1028 Ignatius and the Princess III(DP)

    Ignatius and the Princess III Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K ...

  5. hdu 1028 Ignatius and the Princess III (n的划分)

    Ignatius and the Princess III Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K ...

  6. HDU 1028 Ignatius and the Princess III (生成函数/母函数)

    题目链接:HDU 1028 Problem Description "Well, it seems the first problem is too easy. I will let you ...

  7. HDU 1028 Ignatius and the Princess III (递归,dp)

    以下引用部分全都来自:http://blog.csdn.net/ice_crazy/article/details/7478802  Ice—Crazy的专栏 分析: HDU 1028 摘: 本题的意 ...

  8. HDU 1028 Ignatius and the Princess III (动态规划)

    题目链接:HDU 1028 Problem Description "Well, it seems the first problem is too easy. I will let you ...

  9. HDU 1028 Ignatius and the Princess III:dp or 母函数

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1028 题意: 给你一个正整数n,将n拆分成若干个正整数之和,问你有多少种方案. 注:"4 = ...

随机推荐

  1. python3 实现多域名批量访问特定目录(一)

    渗透测试之批量处理同一框架CMS系统漏洞 当我们做多网站的渗透测试时,会发现很多站点采用的都是同类型的CMS框架,只要我们发现一个漏洞,那么我们可以批量处理这一类站点,高效测试,如果不知道该站点的框架 ...

  2. JDK的命令行工具系列 (一) jps、jstat

    概述 在我们进行故障定位和性能分析时, 可以使用Java Dump(也叫Dump文件)来帮助排查问题, 它记录了JVM运行期间的内存占用和线程执行等情况.其中Heap Dump文件是二进制格式, 它保 ...

  3. jenkins未授权访问漏洞

    jenkins未授权访问漏洞 一.漏洞描述 未授权访问管理控制台,可以通过脚本命令行执行系统命令.通过该漏洞,可以后台管理服务,通过脚本命令行功能执行系统命令,如反弹shell,wget写webshe ...

  4. 第十章 Centos7-系统进程管理 随堂笔记

    第十章 Centos7-系统进程管理 本节所讲内容: 10.1 进程概述和ps查看进程工具 10.2 uptime查看系统负载-top动态管理进程 10.3 前后台进程切换- nice进程优先级-实战 ...

  5. 【0806 | Day 9】三张图带你了解数据类型分类和Python深浅拷贝

    一.数据类型分类 二.Python深浅拷贝

  6. 页面性能监控之performance

    页面性能监测之performance author: @TiffanysBear 最近,需要对业务上的一些性能做一些优化,比如降低首屏时间.减少核心按钮可操作时间等的一些操作:在这之前,需要建立的就是 ...

  7. 记一次JPA遇到的奇葩错误——本地sql不识别表名的别名

    记一次JPA遇到的奇葩错误——本地sql不识别表名的别名 报错:Unknown column 'our' in 'field list' 起因:需要本地sql查询后,分页返回自定义对象.报错信息如下: ...

  8. sql server数据库查询链接服务器

    服务器对象->链接服务器: 或者 select  * from sys.servers: 找到服务器对象名称 select  * from [服务器对象名称].[数据库名称].dbo.[表名]:

  9. jupyter iPython web sit use 1

    I want Jupyter to print all the interactive output without resorting to print, not only the last res ...

  10. TCP与UDP的主要特点

    UDP主要特点: (1)UDP是无连接的,即发送数据之前不需要建立连接(当然,发送数据结束时也没有连接可以释放),因此减少了开销和发送数据之前的时延. (2)UDP使用尽最大努力交付,即不保证可靠交付 ...