需要安装jpype先,这个是python调用java库的桥梁。

# -*- coding: utf-8 -*-

"""
Created on Thu May 10 09:19:55 2018 @author: wang小尧
""" import jpype #路径
jvmPath = jpype.getDefaultJVMPath() # 获得系统的jvm路径
ext_classpath = r"./ner/hanlp\hanlp-1.6.3.jar:./ner/hanlp"
jvmArg = '-Djava.class.path=' + ext_classpath
jpype.startJVM(jvmPath, jvmArg, "-Xms1g", "-Xmx1g") #繁体转简体
def TraditionalChinese2SimplifiedChinese(sentence_str):
HanLP = jpype.JClass('com.hankcs.hanlp.HanLP')
return HanLP.convertToSimplifiedChinese(sentence_str) #切词&命名实体识别与词性标注(可以粗略识别)
def NLP_tokenizer(sentence_str):
NLPTokenizer = jpype.JClass('com.hankcs.hanlp.tokenizer.NLPTokenizer')
return NLPTokenizer.segment(sentence_str) #地名识别,标注为ns
def Place_Recognize(sentence_str):
HanLP = jpype.JClass('com.hankcs.hanlp.HanLP')
segment = HanLP.newSegment().enablePlaceRecognize(True)
return HanLP.segment(sentence_str) #人名识别,标注为nr
def PersonName_Recognize(sentence_str):
HanLP = jpype.JClass('com.hankcs.hanlp.HanLP')
segment = HanLP.newSegment().enableNameRecognize(True)
return HanLP.segment(sentence_str) #机构名识别,标注为nt
def Organization_Recognize(sentence_str):
HanLP = jpype.JClass('com.hankcs.hanlp.HanLP')
segment = HanLP.newSegment().enableOrganizationRecognize(True)
return HanLP.segment(sentence_str) #标注结果转化成列表
def total_result(function_result_input):
x = str(function_result_input)
y = x[1:len(x)-1]
y = y.split(',')
return y #时间实体
def time_result(total_result):
z = []
for i in range(len(total_result)):
if total_result[i][-2:] == '/t':
z.append(total_result[i])
return z #Type_Recognition 可以选 ‘place’,‘person’,‘organization’三种实体,
#返回单一实体类别的列表
def single_result(Type_Recognition,total_result):
if Type_Recognition == 'place':
Type = '/ns'
elif Type_Recognition == 'person':
Type = '/nr'
elif Type_Recognition == 'organization':
Type = '/nt'
else:
print ('请输入正确的参数:(place,person或organization)')
z = []
for i in range(len(total_result)):
if total_result[i][-3:] == Type:
z.append(total_result[i])
return z #把单一实体结果汇总成一个字典
def dict_result(sentence_str):
sentence = TraditionalChinese2SimplifiedChinese(sentence_str)
total_dict = {}
a = total_result(Place_Recognize(sentence))
b = single_result('place',a)
c = total_result(PersonName_Recognize(sentence))
d = single_result('person',c)
e = total_result(Organization_Recognize(sentence))
f = single_result('organization',e)
g = total_result(NLP_tokenizer(sentence))
h = time_result(g)
total_list = [i for i in [b,d,f,h]]
total_dict.update(place = total_list[0],person = total_list[1],organization = total_list[2],time = total_list[3])
jpype.shutdownJVM()#关闭JVM虚拟机
return total_dict #测试
test_sentence="2018年武胜县新学乡政府大楼门前锣鼓喧天,6月份蓝翔给宁夏固原市彭阳县红河镇捐赠了挖掘机,中国科学院计算技术研究所的宗成庆教授负责教授自然语言处理课程"
print (dict_result(test_sentence))

结果:

{'place': [' 武胜县/ns', ' 宁夏/ns', ' 固原市/ns', ' 河镇/ns'], 'person': [' 蓝翔/nr', ' 阳县红/nr', ' 宗成庆/nr'], 'organization': [' 中国科学院/nt'], 'time': ['2018年/t', ' 6月份/t']}

转自:https://www.jianshu.com/p/d7e7cc747e56

hanlp进行命名实体识别的更多相关文章

  1. python调用hanlp进行命名实体识别

    本文分享自 6丁一的猫 的博客,主要是python调用hanlp进行命名实体识别的方法介绍.以下为分享的全文. 1.python与jdk版本位数一致 2.pip install jpype1(pyth ...

  2. 8.HanLP实现--命名实体识别

    笔记转载于GitHub项目:https://github.com/NLP-LOVE/Introduction-NLP 8. 命名实体识别 8.1 概述 命名实体 文本中有一些描述实体的词汇.比如人名. ...

  3. HanLP分词命名实体提取详解

    HanLP分词命名实体提取详解   分享一篇大神的关于hanlp分词命名实体提取的经验文章,文章中分享的内容略有一段时间(使用的hanlp版本比较老),最新一版的hanlp已经出来了,也可以去看看新版 ...

  4. 自然语言18.2_NLTK命名实体识别

    QQ:231469242 欢迎nltk爱好者交流 http://blog.csdn.net/u010718606/article/details/50148261 NLTK中对于很多自然语言处理应用有 ...

  5. 基于条件随机场(CRF)的命名实体识别

    很久前做过一个命名实体识别的模块,现在有时间,记录一下. 一.要识别的对象 人名.地名.机构名 二.主要方法 1.使用CRF模型进行识别(识别对象都是最基础的序列,所以使用了好评率较高的序列识别算法C ...

  6. 神经网络结构在命名实体识别(NER)中的应用

    神经网络结构在命名实体识别(NER)中的应用 近年来,基于神经网络的深度学习方法在自然语言处理领域已经取得了不少进展.作为NLP领域的基础任务-命名实体识别(Named Entity Recognit ...

  7. 学习笔记CB007:分词、命名实体识别、词性标注、句法分析树

    中文分词把文本切分成词语,还可以反过来,把该拼一起的词再拼到一起,找到命名实体. 概率图模型条件随机场适用观测值条件下决定随机变量有有限个取值情况.给定观察序列X,某个特定标记序列Y概率,指数函数 e ...

  8. NLP入门(五)用深度学习实现命名实体识别(NER)

    前言   在文章:NLP入门(四)命名实体识别(NER)中,笔者介绍了两个实现命名实体识别的工具--NLTK和Stanford NLP.在本文中,我们将会学习到如何使用深度学习工具来自己一步步地实现N ...

  9. NLP入门(四)命名实体识别(NER)

      本文将会简单介绍自然语言处理(NLP)中的命名实体识别(NER).   命名实体识别(Named Entity Recognition,简称NER)是信息提取.问答系统.句法分析.机器翻译等应用领 ...

随机推荐

  1. 49道spring面试题整理,附带答案

    1.选择使用Spring框架的原因? 使用Spring: 第一是使用它的IOC功能,在解耦上达到了配置级别. 第二是使用它对数据库访问事务相关的封装. 第三就是各种其他组件与Spring的融合,在Sp ...

  2. redis集群cluster简单设置

    环境: 这里参考官方使用一台服务器:Centos 7  redis-5.0.4    192.168.10.10 redis集群cluster最少要3个主节点,所以本次需要创建6个实例:3个主节点,3 ...

  3. 浅析负载均衡的6种算法,Ngnix的5种算法

    常见的几种负载均衡算法 1.轮询法 将请求按顺序轮流地分配到后端服务器上,它均衡地对待后端的每一台服务器,而不关心服务器实际的连接数和当前的系统负载. 2.随机法 通过系统的随机算法,根据后端服务器的 ...

  4. sqlplus连接远程Oralce数据库

    1. 下载 http://www.oracle.com/technetwork/database/features/instant-client/index-097480.html 2. 三个包 in ...

  5. AtCoder - 4496 G - k-DMC

    AtCoder - 4496 G - k-DMC 题目 长度为n的字符串,q次查询,问"DMC"(不要求连续)在字符串中出现的次数,其中D和M的距离不超过k. 错误思路 通过遍历字 ...

  6. selenium+python关于页面滚动条滑动到底的问题总结

    1.如果滚动条是针对整个HTML可以用如下方式: js = "var q=document.documentElement.scrollTop=10000" # documentE ...

  7. I2C协议简介

    主从芯片如何传输数据 AT24C02是一个存储芯片,需要把数据从ARM板发给AT24C02,也需要从AT24C02读取数据. I2C是一个主从结构,Master发起传输,slave接收或回应 一主多从 ...

  8. Sublime Text2中的快捷方式及html各种标签(待完善)

    快捷方式 1.xhtml+tab 2.自动补全标签 Alt + .  补全标签 标签 1.<p>段落标签 ,前后换行 <h1.2.3.4.5>标题标签 h1最大,一级标题 2. ...

  9. Spring和SpringMVC总结篇

    作者:肥宅兜链接:https://www.cnblogs.com/doudouxiaoye/p/5693399.html 1.为什么使用Spring ? 方便解耦,简化开发;通过Spring提供的Io ...

  10. arduino驱动步进电机

    https://learn.adafruit.com/adafruit-motor-shield-v2-for-arduino/install-software 1安装库 Adafruit_Motor ...