链接:

https://vjudge.net/problem/SPOJ-BALNUM

题意:

Balanced numbers have been used by mathematicians for centuries. A positive integer is considered a balanced number if:

  1.  Every even digit appears an odd number of times in its decimal representation
  2.  Every odd digit appears an even number of times in its decimal representation

For example, 77, 211, 6222 and 112334445555677 are balanced numbers while 351, 21, and 662 are not.

Given an interval [A, B], your task is to find the amount of balanced numbers in [A, B] where both A and B are included.

思路:

三进制记录每个值用的奇数次还是偶数次。

直接DP即可。

代码:

// #include<bits/stdc++.h>
#include<iostream>
#include<cstdio>
#include<vector>
#include<string.h>
#include<set>
#include<queue>
#include<algorithm>
#include<math.h>
using namespace std;
typedef long long LL;
typedef unsigned long long ULL;
const int MOD = 1e9+7;
const int MAXN = 1e6+10; ULL a, b;
ULL F[21][60000];
int dig[21];
ULL m[11]; int Upd(int x, int p)
{
int sum = 0;
for (int i = 0;i < 10;i++)
{
int tmp = x%3;
x /= 3;
if (i == p)
sum += (tmp == 1 ? 2 : 1) * m[i];
else
sum += tmp * m[i];
}
return sum;
} bool Check(int x)
{
int p = 0;
while(x)
{
if (x%3 == 2 && p%2 == 0)
return false;
if (x%3 == 1 && p%2 == 1)
return false;
x /= 3;
p++;
}
return true;
} ULL Dfs(int pos, int sta, bool zer, bool lim)
{
if (pos == -1)
return Check(sta);
if (!lim && F[pos][sta] != -1)
return F[pos][sta];
int up = lim ? dig[pos] : 9;
ULL ans = 0;
for (int i = 0;i <= up;i++)
{
ans += Dfs(pos-1, (zer && i == 0) ? 0 : Upd(sta, i), zer && i == 0, lim && i == up);
}
if (!lim)
F[pos][sta] = ans;
return ans;
} ULL Solve(ULL x)
{
int p = 0;
while(x)
{
dig[p++] = x%10;
x /= 10;
}
return Dfs(p-1, 0, 1, 1);
} int main()
{
// freopen("test.in", "r", stdin);
m[0] = 1;
for (int i = 1;i < 11;i++)
m[i] = m[i-1]*3;
memset(F, -1, sizeof(F));
int t;
scanf("%d", &t);
while(t--)
{
scanf("%llu %llu", &a, &b);
printf("%llu\n", Solve(b)-Solve(a-1));
} return 0;
}

SPOJ - BALNUM - Balanced Numbers(数位DP)的更多相关文章

  1. SPOJ BALNUM - Balanced Numbers - [数位DP][状态压缩]

    题目链接:http://www.spoj.com/problems/BALNUM/en/ Time limit: 0.123s Source limit: 50000B Memory limit: 1 ...

  2. SPOJ10606 BALNUM - Balanced Numbers(数位DP+状压)

    Balanced numbers have been used by mathematicians for centuries. A positive integer is considered a ...

  3. spoj 10606 Balanced Numbers 数位dp

    题目链接 一个数称为平衡数, 满足他各个数位里面的数, 奇数出现偶数次, 偶数出现奇数次, 求一个范围内的平衡数个数. 用三进制压缩, 一个数没有出现用0表示, 出现奇数次用1表示, 出现偶数次用2表 ...

  4. SPOJ BALNUM Balanced Numbers (数位dp)

    题目:http://www.spoj.com/problems/BALNUM/en/ 题意:找出区间[A, B]内所有奇数字出现次数为偶数,偶数字出现次数为计数的数的个数. 分析: 明显的数位dp题, ...

  5. SPOJ - BALNUM Balanced Numbers(数位dp+三进制状压)

    Balanced Numbers Balanced numbers have been used by mathematicians for centuries. A positive integer ...

  6. spoj Balanced Numbers(数位dp)

    一个数字是Balanced Numbers,当且仅当组成这个数字的数,奇数出现偶数次,偶数出现奇数次 一下子就相到了三进制状压,数组开小了,一直wa,都不报re, 使用记忆化搜索,dp[i][s] 表 ...

  7. Balanced Numbers (数位DP)

    Balanced Numbers https://vjudge.net/contest/287810#problem/K Balanced numbers have been used by math ...

  8. SPOJ BALNUM Balanced Numbers(数位DP+状态压缩)题解

    思路: 把0~9的状态用3进制表示,数据量3^10 代码: #include<cstdio> #include<map> #include<set> #includ ...

  9. SPOJ BALNUM Balanced Numbers 平衡数(数位DP,状压)

    题意: 平衡树定义为“一个整数的某个数位若是奇数,则该奇数必定出现偶数次:偶数位则必须出现奇数次”,比如 222,数位为偶数2,共出现3次,是奇数次,所以合法.给一个区间[L,R],问有多少个平衡数? ...

随机推荐

  1. PAT(B) 1070 结绳(Java)

    题目链接:1070 结绳 (25 point(s)) 题目描述 给定一段一段的绳子,你需要把它们串成一条绳.每次串连的时候,是把两段绳子对折,再如下图所示套接在一起.这样得到的绳子又被当成是另一段绳子 ...

  2. GIT讲解

    一.什么是Git: Git是目前世界上最先进的分布式版本控制系统. 二.为什么要用版本控制系统: 1.更方便的存储版本 2.恢复之前的版本 3.更方便的进行对比 4.协同合作 三.如何安装GIT: 1 ...

  3. 3.02定义常量之const

    [注:本程序验证是使用vs2013版] #include <stdio.h> #include <stdlib.h> #include <string.h> #pr ...

  4. -Dmaven.test.skip=true 和 -DskipTests

    -DskipTests,不执行测试用例,但编译测试用例类生成相应的class文件至target/test-classes下. -Dmaven.test.skip=true,不执行测试用例,也不编译测试 ...

  5. Jenkins + GitLab + SpringBoot 实现持续集成脚本

    Linux脚本 #!/bin/bash jar_name=hq-api.jar cd /usr/local/app/hq-api echo "Stopping SpringBoot Appl ...

  6. @PostConstruct使用总结

    https://blog.csdn.net/qq_37636695/article/details/84791468 https://www.jianshu.com/p/aba99a49a459 @P ...

  7. Process.Start cmd 参数空格问题解决

    Process.Start("cmd.exe", "/c start  \"title\"  \"C:\\Program Files\\a. ...

  8. Python接口自动化基础---cookie绕过登录

    使用fiddler获取登录cookie 对比登录前和登录后的cookis 登录前 登录后: 获得cookie之后,使用cookie访问,就可以获取登录态: import requests url='h ...

  9. catch SocketException

    https://stackoverflow.com/questions/32810051/cannot-catch-socketexception/32810079#32810079 https:// ...

  10. mongoose 警告信息 { useNewUrlParser: true } { useUnifiedTopology: true }

    问题: 解决: