[USACO14MAR] Sabotage 二分答案 分数规划

最终答案的式子:

\[\frac{sum-sum[l,r]}{n-len[l,r]}\le ans
\]

转换一下:

\[sum[1,l-1]+sum[r+1,n]\le ans*(len[l,l-1]+len[r+1,n])\\
\sum (a[j]-ans)\le 0 \\
(j\in[1,l-1],[r+1,n])
\]

这里我们先都减去\(ans\),然后求一个前缀和、后缀和、在\(i\)点最小的前缀和,在\(i\)点最小的后缀和,\(O(n)\)枚举断点(也不算断点)如果存在则return 1

#include <cstdio>
#include <algorithm>
#define MAXN 100010
using namespace std;
int n;
int m[MAXN];
double psum[MAXN],lsum[MAXN],psum_min[MAXN],lsum_min[MAXN],a[MAXN];
const double eps=1e-6;
inline bool check(double x){
for(int i=0;i<=n+1;++i) psum_min[i]=lsum_min[i]=1e9;
for(int i=1;i<=n;++i) a[i]=(double)m[i]-x;
for(int i=1;i<=n;++i) psum[i]=psum[i-1]+a[i], psum_min[i]=min(psum_min[i-1], psum[i]);
for(int i=n;i;--i) lsum[i]=lsum[i+1]+a[i], lsum_min[i]=min(lsum_min[i+1], lsum[i]);
for(int i=1;i<n-1;++i)
if(psum_min[i]+lsum_min[i+2]<=0) return 1;
return 0;
}
int main(){
scanf("%d", &n);
for(int i=1;i<=n;++i) scanf("%d", &m[i]);
double l=1,r=10000,ans=-1;
while(r-l>eps){
double mid=(l+r)/2;
if(check(mid)) r=mid,ans=mid;
else l=mid;
}
printf("%.3lf", ans);
}

[USACO14MAR] Sabotage 二分答案 分数规划的更多相关文章

  1. [USACO14MAR] 破坏Sabotage(二分答案,分数规划)

    题目链接 Solution 去掉中间一段区间 \([l,r]\) 后剩下的平均值可以表示为 : \[\frac{\sum^{n}_{i=1}{v_i}-\sum^{r}_{i=l}{v_i}}{n-( ...

  2. [USACO14MAR]破坏Sabotage 二分答案

    题目描述 Farmer John's arch-nemesis, Farmer Paul, has decided to sabotage Farmer John's milking equipmen ...

  3. BZOJ 4819 Luogu P3705 [SDOI2017]新生舞会 (最大费用最大流、二分、分数规划)

    现在怎么做的题都这么水了.. 题目链接: (bzoj) https://www.lydsy.com/JudgeOnline/problem.php?id=4819 (luogu) https://ww ...

  4. BZOJ 3477: [Usaco2014 Mar]Sabotage( 二分答案 )

    先二分答案m, 然后对于原序列 A[i] = A[i] - m,  然后O(n)找最大连续子序列和, 那么此时序列由 L + mx + R组成. L + mx + R = sum - n * m, s ...

  5. POJ 3621 Sightseeing Cows 【01分数规划+spfa判正环】

    题目链接:http://poj.org/problem?id=3621 Sightseeing Cows Time Limit: 1000MS   Memory Limit: 65536K Total ...

  6. 【Luogu】P3705新生舞会(费用流+分数规划+二分答案)

    题目链接 本来以为自己可以做出来,结果……打脸了 (貌似来wc立了好几个flag了,都没竖起来) 不过乱蒙能蒙出一个叫“分数规划”的东西的式子还是很开心的 观察$C=\frac{a_{1}+a_{2} ...

  7. [BJOI2019]奥术神杖——AC自动机+DP+分数规划+二分答案

    题目链接: [BJOI2019]奥术神杖 答案是$ans=\sqrt[c]{\prod_{i=1}^{c}v_{i}}=(\prod_{i=1}^{c}v_{i})^{\frac{1}{c}}$. 这 ...

  8. [SDOI2017] 新生舞会 - 二分图最大权匹配,分数规划,二分答案

    有一个二分图,每个部都有 \(n\) 个点,每条边有两个参数 \(a_e, b_e\),求一种匹配,使得 \(\sum a_i / \sum b_i\) 最大 Solution 显然的分数规划,考虑二 ...

  9. 分数规划模板(洛谷P4377 [USACO18OPEN]Talent Show)(分数规划,二分答案,背包)

    分数规划是这样一个东西: 给定若干元素,每个元素有两个属性值\(a_i,b_i\),在满足题目要求的某些限制下选择若干元素并求出\(\frac{\sum a}{\sum b}\)的最大值. 如果没有限 ...

随机推荐

  1. [BZOJ3230]相似子串(后缀数组)

    显然可以通过后缀数组快速找到询问的两个串分别是什么,然后正反各建一个后缀数组来求两个串的LCP和LCS即可. #include<cstdio> #include<cstring> ...

  2. VC++如何利用Matlab2014b的图形引擎进行绘图

    VC++如何利用Matlab的图形引擎 在Visual C++ 2015 工程中使用 Matlab2014b 提供的图形引擎进行绘图的详细过程. 问题来源: 有时候用C++写一些演示程序,有数据可视化 ...

  3. 使用 kill 命令杀死 java进程,你用对了吗?

    在本地调试agent相关功能,需要经常性的杀掉Java进程,验证一些极端情况. 每次都是本能执行如下步骤 jps kill -9 <pid> reboot 有一次验证,发现代码中添加的Sh ...

  4. C# vb .net实现淡出效果特效滤镜

    在.net中,如何简单快捷地实现Photoshop滤镜组中的淡出效果特效呢?答案是调用SharpImage!专业图像特效滤镜和合成类库.下面开始演示关键代码,您也可以在文末下载全部源码: 设置授权 第 ...

  5. asp.net core 核心对象解析

    首先声明这篇文章的所有内容均来自https://www.cnblogs.com/artech/p/inside-asp-net-core-framework.html ----感谢大内老A(artec ...

  6. Java web服务端参数校验Javax.validation (springboot)

    一.基本使用 Javax.validation是spring集成自带的一个参数校验接口.可通过添加注解来设置校验条件. 下面以springboot项目为例进行说明.创建web项目后,不需要再添加其他的 ...

  7. pandas-13 时间序列操作方法pd.date_range()

    pandas-13 时间序列操作方法pd.date_range() 在pandas中拥有强大的时间序列操作方法. 使用 pd.date_range() 生成 'pandas.core.indexes. ...

  8. dmesg命令

    用于检测和控制内核环缓冲.程序用来助用户了解系统的启动信息 Linux命令dmesg用来显示开机信息,kernel会将开机信息存储在ring buffer中 开机信息保存在/var/log目录中名称为 ...

  9. Spring的核心容器

    Spring框架的主要功能是通过其核心容器来实现的.Spring提供了2种核心容器:BeanFactory.ApplicationContext. BeanFactory BeanFactory是一个 ...

  10. PHP实现财务审核通过后返现金额到客户

    应用场景: 有这么一个返现的系统,当前端客户发起提现的时候,后端就要通过审核这笔返现订单,才可以返现到客户的账号里. 来看看下面的截图 这里的业务场景就是经过两轮审核:销售审核,财务审核都通过后,后端 ...