自助法(Bootstraping)是另一种模型验证(评估)的方法(之前已经介绍过单次验证和交叉验证:验证和交叉验证(Validation & Cross Validation))。其以自助采样法(Bootstrap Sampling)为基础,即有放回的采样或重复采样。(注:这是一种样本内抽样的方法,即将样本看作总体并从中进行抽样。)

具体做法是:在含有 m 个样本的数据集中,每次随机挑选一个样本, 将其作为训练样本,再将此样本放回到数据集中,这样有放回地抽样 m 次,生成一个与原数据集大小相同的数据集,这个新数据集就是训练集。这样有些样本可能在训练集中出现多次,有些则可能从未出现。原数据集中大概有 36.8% 的样本不会出现在新数据集中。因此,我们把这些未出现在新数据集中的样本作为验证集。把前面的步骤重复进行多次,这样就可以训练出多个模型并得到它们的验证误差,然后取平均值,作为该模型的验证误差。

如果需要在多个不同的模型中进行选择,那么事先留出测试集,然后在剩余的数据集上用自助法验证模型,选择验证误差最小的模型作为最好的模型,然后用训练集+验证集数据按最好模型的设置训练出一个新的模型,作为最终的模型,最后用测试集测试最终的模型。

为什么原数据集中大概有 36.8% 的样本不会出现在新数据集中?假设数据集中有m个样本,那么每次每一个样本被抽取到的概率是1/m,抽样m次,某个样本始终不被抽取到的概率是(1-1/m)m。当m的取值趋近于无穷大时,样本未被抽中的概率为e的负一次方 ,结果约等于0.368。

优点:训练集的样本总数和原数据集一样都是 m个,并且仍有约 1/3 的数据不出现在训练集中,而可以作为验证集。

缺点:这样产生的训练集的数据分布和原数据集的不一样了,会引入估计偏差。

用途:自助法在数据集较小,难以有效划分训练集/验证集时很有用;此外,自助法能从初始数据集中产生多个不同的训练集,这对集成学习等方法有很大的好处。

总结:Bootstraping通过重复抽样,避免了Cross Validation造成的样本减少的问题。其次,Bootstraping也可以用于随机创造数据。比如,随机森林算法就是从原始训练数据中,用bootstrap sampling的方法有放回地随机抽取k个新的自助样本集,并由此构建k棵分类回归树。但由于其训练集有重复数据,这会改变数据的分布,因而导致训练结果有估计偏差,因此这种方法不是很常用,除非数据量真的很少。

自助法(Bootstraping)的更多相关文章

  1. Jackknife,Bootstraping, bagging, boosting, AdaBoosting, Rand forest 和 gradient boosting的区别

    引自http://blog.csdn.net/xianlingmao/article/details/7712217 Jackknife,Bootstraping, bagging, boosting ...

  2. 【机器学习】Jackknife,Bootstraping, bagging, boosting, AdaBoosting, Rand forest 和 gradient boosting

    Jackknife,Bootstraping, bagging, boosting, AdaBoosting, Rand forest 和 gradient boosting 这些术语,我经常搞混淆, ...

  3. R语言实战(六)重抽样与自助法

    本文对应<R语言实战>第12章:重抽样与自助法 之前学习的基本统计分析.回归分析.方差分析,是假定观测数据抽样自正态分布或者其他性质较好的理论分布,进而进行的假设检验和总体参数的置信区间估 ...

  4. R in action读书笔记(17)第十二章 重抽样与自助法

    12.4 置换检验点评 除coin和lmPerm包外,R还提供了其他可做置换检验的包.perm包能实现coin包中的部分功能,因此可作为coin包所得结果的验证.corrperm包提供了有重复测量的相 ...

  5. R in action读书笔记(16)第十二章 重抽样与自助法之 置换检验

    第十二章:重抽样与自助法 本章,我们将探究两种应用广泛的依据随机化思想的统计方法:置换检验和自助法 12.1 置换检验 置换检验,也称随机化检验或重随机化检验. 有两种处理条件的实验,十个受试者已经被 ...

  6. AngularJS bootStraping

    看这个 http://www.dotnet-tricks.com/Tutorial/angularjs/5aWL261214-Understanding-AngularJS-Bootstrap-Pro ...

  7. 吴裕雄--天生自然 R语言开发学习:重抽样与自助法(续一)

    #-------------------------------------------------------------------------# # R in Action (2nd ed): ...

  8. 转载:bootstrap, boosting, bagging 几种方法的联系

    转:http://blog.csdn.net/jlei_apple/article/details/8168856 这两天在看关于boosting算法时,看到一篇不错的文章讲bootstrap, ja ...

  9. bootstrap, boosting, bagging 几种方法的联系

    http://blog.csdn.net/jlei_apple/article/details/8168856 这两天在看关于boosting算法时,看到一篇不错的文章讲bootstrap, jack ...

随机推荐

  1. 关于ElasticSearch的堆内存设置与优化

    1.什么是堆内存?Java 中的堆是 JVM 所管理的最大的一块内存空间,主要用于存放各种类的实例对象.在 Java 中,堆被划分成两个不同的区域:- 新生代 ( Young ).- 老年代 ( Ol ...

  2. Java CookieUtils

    Java CookieUtils /** * <html> * <body> * <P> Copyright 1994 JsonInternational</ ...

  3. java之spring mvc之Restful风格开发及相关的配置

    1. Restful : 表征状态状态转移. 传统 : url : http://localhost:8080/usersys/delete.do?user.id=12 Restful 风格:url ...

  4. Hadoop—MapReduce计算气象温度

    Hadoop-MapReduce计算气象温度 1 运行环境说明 1.1 硬软件环境 主机操作系统:Mac OS 64 bit ,8G内存 虚拟软件:Parallers Desktop12 虚拟机操作系 ...

  5. python入门基础思维导图

  6. js 获取 对象 属性名称(转载)

    来源:https://www.cnblogs.com/YuyuanNo1/p/9257634.html dataObj = {name : su,age : 26,height : 18cm }; f ...

  7. Spring Boot 默认支持的并发量

    Spring Boot应用支持的最大并发量是多少? Spring Boot 能支持的最大并发量主要看其对Tomcat的设置,可以在配置文件中对其进行更改.当在配置文件中敲出max后提示值就是它的默认值 ...

  8. linux下nm命令的使用

    linux下强大的文件分析工具 -- nm 什么是nm nm命令是linux下自带的特定文件分析工具,一般用来检查分析二进制文件.库文件.可执行文件中的符号表,返回二进制文件中各段的信息. 目标文件. ...

  9. 【HICP Gauss】数据库 数据库管理(文件 用户管理 系统权限 对象权限 profile)-7

    数据库运行 依赖不同类型的文件 ,数据文件 参数文件 控制文件 redo日志文件 运行日志文件 审计日志文件等 数据文件 就是表空间文件 存储数据库的数据文件 参数文件 用户修改的配置信息 控制文件 ...

  10. CSS中px,em,rem,pt的区别及四者换算?

    本文章重要说明px,em,rem,pt的区别以及四者之间的换算. em单位有如下特点 1. em的值并不是固定的; 2. em会继承父级元素的字体大小. 我们在写CSS的时候如果要用em为单位,需要注 ...