自助法(Bootstraping)是另一种模型验证(评估)的方法(之前已经介绍过单次验证和交叉验证:验证和交叉验证(Validation & Cross Validation))。其以自助采样法(Bootstrap Sampling)为基础,即有放回的采样或重复采样。(注:这是一种样本内抽样的方法,即将样本看作总体并从中进行抽样。)

具体做法是:在含有 m 个样本的数据集中,每次随机挑选一个样本, 将其作为训练样本,再将此样本放回到数据集中,这样有放回地抽样 m 次,生成一个与原数据集大小相同的数据集,这个新数据集就是训练集。这样有些样本可能在训练集中出现多次,有些则可能从未出现。原数据集中大概有 36.8% 的样本不会出现在新数据集中。因此,我们把这些未出现在新数据集中的样本作为验证集。把前面的步骤重复进行多次,这样就可以训练出多个模型并得到它们的验证误差,然后取平均值,作为该模型的验证误差。

如果需要在多个不同的模型中进行选择,那么事先留出测试集,然后在剩余的数据集上用自助法验证模型,选择验证误差最小的模型作为最好的模型,然后用训练集+验证集数据按最好模型的设置训练出一个新的模型,作为最终的模型,最后用测试集测试最终的模型。

为什么原数据集中大概有 36.8% 的样本不会出现在新数据集中?假设数据集中有m个样本,那么每次每一个样本被抽取到的概率是1/m,抽样m次,某个样本始终不被抽取到的概率是(1-1/m)m。当m的取值趋近于无穷大时,样本未被抽中的概率为e的负一次方 ,结果约等于0.368。

优点:训练集的样本总数和原数据集一样都是 m个,并且仍有约 1/3 的数据不出现在训练集中,而可以作为验证集。

缺点:这样产生的训练集的数据分布和原数据集的不一样了,会引入估计偏差。

用途:自助法在数据集较小,难以有效划分训练集/验证集时很有用;此外,自助法能从初始数据集中产生多个不同的训练集,这对集成学习等方法有很大的好处。

总结:Bootstraping通过重复抽样,避免了Cross Validation造成的样本减少的问题。其次,Bootstraping也可以用于随机创造数据。比如,随机森林算法就是从原始训练数据中,用bootstrap sampling的方法有放回地随机抽取k个新的自助样本集,并由此构建k棵分类回归树。但由于其训练集有重复数据,这会改变数据的分布,因而导致训练结果有估计偏差,因此这种方法不是很常用,除非数据量真的很少。

自助法(Bootstraping)的更多相关文章

  1. Jackknife,Bootstraping, bagging, boosting, AdaBoosting, Rand forest 和 gradient boosting的区别

    引自http://blog.csdn.net/xianlingmao/article/details/7712217 Jackknife,Bootstraping, bagging, boosting ...

  2. 【机器学习】Jackknife,Bootstraping, bagging, boosting, AdaBoosting, Rand forest 和 gradient boosting

    Jackknife,Bootstraping, bagging, boosting, AdaBoosting, Rand forest 和 gradient boosting 这些术语,我经常搞混淆, ...

  3. R语言实战(六)重抽样与自助法

    本文对应<R语言实战>第12章:重抽样与自助法 之前学习的基本统计分析.回归分析.方差分析,是假定观测数据抽样自正态分布或者其他性质较好的理论分布,进而进行的假设检验和总体参数的置信区间估 ...

  4. R in action读书笔记(17)第十二章 重抽样与自助法

    12.4 置换检验点评 除coin和lmPerm包外,R还提供了其他可做置换检验的包.perm包能实现coin包中的部分功能,因此可作为coin包所得结果的验证.corrperm包提供了有重复测量的相 ...

  5. R in action读书笔记(16)第十二章 重抽样与自助法之 置换检验

    第十二章:重抽样与自助法 本章,我们将探究两种应用广泛的依据随机化思想的统计方法:置换检验和自助法 12.1 置换检验 置换检验,也称随机化检验或重随机化检验. 有两种处理条件的实验,十个受试者已经被 ...

  6. AngularJS bootStraping

    看这个 http://www.dotnet-tricks.com/Tutorial/angularjs/5aWL261214-Understanding-AngularJS-Bootstrap-Pro ...

  7. 吴裕雄--天生自然 R语言开发学习:重抽样与自助法(续一)

    #-------------------------------------------------------------------------# # R in Action (2nd ed): ...

  8. 转载:bootstrap, boosting, bagging 几种方法的联系

    转:http://blog.csdn.net/jlei_apple/article/details/8168856 这两天在看关于boosting算法时,看到一篇不错的文章讲bootstrap, ja ...

  9. bootstrap, boosting, bagging 几种方法的联系

    http://blog.csdn.net/jlei_apple/article/details/8168856 这两天在看关于boosting算法时,看到一篇不错的文章讲bootstrap, jack ...

随机推荐

  1. (转)微服务_创建一个简单的Eureka注册中心

    原文地址:https://www.cnblogs.com/lplshermie/p/9105329.html 微服务和分布式已经成了一种极其普遍的技术,为了跟上时代的步伐,最近开始着手学习Spring ...

  2. win add static arp

    win add static arp > arp -s "192.168.0.2" "00-0a-35-01-fe-c0" > arp -a | f ...

  3. Django模板语言的学习

    1.模板系统 1.语法 1.变量相关 {{ name}} ,{{ name|length}}, {{ name |default:"默认值"}} 2.逻辑相关 1.if判断 {% ...

  4. tf.reduce_mean函数用法及有趣区别

    sess=tf.Session() a=np.array([1,2,3,5.]) # 此代码保留为浮点数 a1=np.array([1,2,3,5]) # 此代码保留为整数 c=tf.reduce_m ...

  5. 一个牛逼的 Python 调试工具PySnooper

    原文转自:https://mp.weixin.qq.com/s/OtLr-cNethboMgmCcUx2pA PySnooper 使用起来十分简单,开发者可以在任何庞大的代码库中使用它,而无需进行任何 ...

  6. mysql 根据日期进行查询数据,没有数据也要显示空

    写这篇博客主要是记录自己在对订单进行按日期查询时使用的一种查询的方法,这里的orders是订单表,你也可以改成别的什么表对于最终数据不会造成影响,除非你那个表的数据只有几条那样就会出现查不到日期的情况 ...

  7. Locust性能模块浅谈

    今天接触到Locust性能模块,下面介绍一下安装与简单的应用 1.安装方式:pip install Locust Locust支持Python 2.7, 3.4, 3.5, and 3.6的版本,小编 ...

  8. PEP 8016-Python之父重回决策层

      PEP 8016-Python之父重回决策层 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 去年,技术社区里还发生了一件大事:Linux 之父 Linus Torvalds 宣 ...

  9. JVM——垃圾回收资格的判定

    一:判断一个对象是否已死 1:引用数算法:给对象加个引用计数器,被引用时加一,引用失效减一,在任何时刻一直为0的就说明不会被使用,但是由于一种情况的存在,导致这种算法不被JVM所考虑,在两个对象相互引 ...

  10. 关闭firefox火狐浏览器下载完成时自动扫描(49.0.2以后版本)

    本人自己找到的方法,亲测有效,如下:1.在火狐浏览器地址里输入about:config回车,可能会提示“这可能使质量保证失效”,点击[我了解此风险!]2.在搜索框里输入browser.safebrow ...