前面分析了Eureka的使用,作为服务注册中心,Eureka 分为 Server 端和 Client 端,Client 端作为服务的提供者,将自己注册到 Server 端,Client端高可用的方式是使用多机部署然后注册到Server,Server端为了保证服务的高可用,也可以使用多机部署的方式。前面简单搭建了Eureka Client 和 Server,然后将Client成功注册到 Server,本节我们将来看看如何调用Eureka服务,在多机部署情况下如何保证负载均衡。Spring Cloud 提供了一个组件:Ribbon。

Ribbon是客户端负载均衡器,可以对HTTP和TCP客户端的行为进行大量控制。Ribbon中的中心概念是指定客户端的概念。

关于服务的负载均衡,硬要是分的话可以分两种:

  1. 服务端负载均衡。将多个服务注册到一个公共的注册中心,服务调用者访问注册中心,由注册中心提供服务的负载均衡。
  2. 客户端负载均衡。将多个服务注册到一个注册中心,注册中心维护一个注册表,如果有另一个服务想要调用这个服务,那么访问注册中心即可,注册中心返回注册表信息给服务端,服务端通过特定的平衡算法来决定要调用注册表中的哪个提供者。

服务端负载均衡:

客户端负载均衡:

服务端负载均衡的代表性例子就是nginx,LVS。那么客户端的负载均衡就是我们要说的Ribbon。Ribbon主要提供客户端负载平衡算法,除此之外,Ribbon还提供:

  • 服务发现集成 :功能区负载平衡器在动态环境(如云)中提供服务发现。功能区库中包含与Eureka和Netflix服务发现组件的集成;
  • 容错 : Ribbon API可以动态确定服务器是否已在实时环境中启动并运行,并且可以检测到那些已关闭的服务器;
  • 可配置的负载平衡规则 : Ribbon支持开箱即用的RoundRobinRuleAvailabilityFilteringRuleWeightedResponseTimeRule,还支持定义自定义规则。

Ribbon API提供以下组件供我们使用:

  • Rule :定义负载均衡策略;
  • Ping : 定义如何ping目标服务实例来判断是否存活, ribbon使用单独的线程每隔一段时间(默认10s)对本地缓存的ServerList做一次检查;
  • ServerList :定义如何获取服务实例列表. 两种实现基于配置的ConfigurationBasedServerList和基于Eureka服务发现的DiscoveryEnabledNIWSServerList
  • ServerListFilter: 用来使用期望的特征过滤静态配置动态获得的候选服务实例列表. 若未提供, 默认使用ZoneAffinityServerListFilter
  • ILoadBalancer: 定义了软负载均衡器的操作的接口. 一个典型的负载均衡器至少需要一组用来做负载均衡的服务实例, 一个标记某个服务实例不在旋转中的方法, 和对应的方法调用从实例列表中选出某一个服务实例;
  • ServerListUpdater: DynamicServerListLoadBalancer用来更新实例列表的策略(推EurekaNotificationServerListUpdater/拉PollingServerListUpdater, 默认是拉)

配置服务策略

全局策略设置

使用以下方式配置的策略表示对该项目中调用的所有服务生效。

@Configuration
public class MyConfiguration{
@Bean
public IRule ribbonRule(){
return new RandomRule();
} //定义一个负载均衡的RestTemplate
@Bean
@LoadBalanced
public RestTemplate restTemplate(){
return new RestTemplate();
} }

上面的配置表示:

  1. 定义了一个随机方式的服务调用方式,即随即调用某个服务的提供者;
  2. 定义一个负载均衡的 RestTemplate,使用了 @LoadBalanced注解,该注解配合覆盖均衡策略一起使用 RestTemplate 发出的请求才能生效。

RestTemplate是 Spring 提供的用于访问Rest服务的客户端模板工具集,Ribbon并没有创建新轮子,基于此通过负载均衡配置发出HTTP请求。

ribbon的负载均衡策略主要包括以下几种:

策略类 命名 描述
RandomRule 随机策略 随机选择server
RoundRobinRule 轮询策略 按顺序选择server
RetryRule 重试策略 在一个配置时间段内当选择的server不成功,则继续轮训,一直尝试选择一个可用的server
BestAvailableRule 最低并发策略 先过滤掉由于多次访问故障而处于断路器跳闸状态的服务,然后选择一个并发量最小的服务。
AvailabilityFilteringRule 可用过滤策略 先过滤掉由于多次访问故障而处于断路器跳闸状态的服务,以及并发连接数超过阈值的服务,剩下的服务,使用轮询策略
ResponseTimeWeightedRule 响应时间加权策略 根据server的响应时间分配权重。响应时间越长,权重越低,被选择到的概略就越低,权重越高,被选择到的概率就越高
ZoneAvoidanceRule 区域权衡策略 综合判断server所在的区域的性能和server的可用性轮询选择server,并且判定一个AWS Zobe的运行性能是否可用,提出不可用的Zone中所有server
局部策略设置

如果在项目中你想对某些服务使用指定的负载均衡策略,那么可以如下配置:

@Configuration
@RibbonClients({
@RibbonClient(name = "user-service",configuration = UserServiceConfig.class),
@RibbonClient(name = "order-service",configuration = OrderServiceConfig.class)
})
public class RibbonConfig {
}

@RibbonClients 中可以包含多个@RibbonClient。每个@RibbonClient表示一个服务名,后面对应的类表示该服务配套的策略规则。

如果你只想对一个服务应用某种规则,那么可以省略:@RibbonClients:

@Configuration
@RibbonClient(name = "order-service",configuration = OrderServiceConfig.class)
public class RibbonConfig {
}

超时重试

HTTP请求不免的会有网络不好的情况出现超时,Ribbon提供了超时重试机制,提供如下参数可以设置:

ribbon-client:
ribbon:
ConnectTimeout: 3000
ReadTimeout: 60000
MaxAutoRetries: 1 #对第一次请求的服务的重试次数
MaxAutoRetriesNextServer: 1 #要重试的下一个服务的最大数量(不包括第一个服务)
OkToRetryOnAllOperations: true
NFLoadBalancerRuleClassName: com.netflix.loadbalancer.RandomRule

饥饿加载

Ribbon在进行客户端负载均衡的时候并不是在启动的时候就加载上下文的,实在实际请求的时候才加载,有点像servlet的第一次请求的时候才去生成实例,这回导致第一次请求会比较的缓慢,甚至可能会出现超时的情况。所以我们可以指定具体的客户端名称来开启饥饿加载,即在启动的时候便加载素养的配置项的应用上下文。

ribbon:
eager-load:
enabled: true
clients: ribbon-client-1, ribbon-client-2, ribbon-client-3

Ribbon负载均衡示例

下面看一下整合Eureka 和 Ribbon如何实现服务调用 和 负载均衡。有了Eureka之后,服务调用就无需关注服务提供者的IP。

服务的整体流程如上图,一个集成了Ribbon的Eureka Client 从Eureka Server中获取服务,首先拉取服务list,然后Ribbon服务会根据配置的负载均衡策略选取合适的服务提供者,向该提供者发送请求获取结果。

工程结构如下:

一个 Eureka Server,3个Eureka Client,一个集成了Ribbon 的Consumer。整体代码我就不贴了,已经上传至GitHub自行下载。Demo 工程见这里:

简单说一下关于 Ribbon consumer的配置:

pom文件中需要引入关于Ribbon的包,同时consumer也是一个Eureka Client要去拉 Eureka Server的配置,所以需要Eureka client的包。

<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-starter-netflix-ribbon</artifactId>
</dependency>
<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-starter-netflix-eureka-client</artifactId>
</dependency>

在启动类中初始化了两个bean:

import com.netflix.loadbalancer.IRule;
import com.netflix.loadbalancer.RandomRule;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.cloud.client.discovery.EnableDiscoveryClient;
import org.springframework.cloud.client.loadbalancer.LoadBalanced;
import org.springframework.context.annotation.Bean;
import org.springframework.web.client.RestTemplate; @EnableDiscoveryClient
@SpringBootApplication
public class RibbonDemoApplication { public static void main(String[] args) {
SpringApplication.run(RibbonDemoApplication.class, args);
} @Bean
@LoadBalanced
RestTemplate restTemplate() {
return new RestTemplate();
} @Bean
public IRule ribbonRule() {
return new RandomRule();//这里配置策略,和配置文件对应
}
}

RestTemplate 和 IRule负载均衡策略。

然后就可以使用已经配置了负载均衡的 RestTemplate 发起请求了:

@Service
public class DemoService { @Autowired
RestTemplate restTemplate; public String hello(String name) { return restTemplate.getForEntity("http://eureka-client/hello/" + name, String.class).getBody();
}
}

大家自行下载Demo工程进行调试。

Spring Cloud Ribbon---微服务调用和客户端负载均衡的更多相关文章

  1. 微服务调用之feign负载均衡及服务降级

    一,负载均衡: feign已经集成了ribbon,将service1,service2在不同端口启动多个实例可以自动负载均衡 idea: application.yml中server.port: ${ ...

  2. 利用Spring Cloud实现微服务- 熔断机制

    1. 熔断机制介绍 在介绍熔断机制之前,我们需要了解微服务的雪崩效应.在微服务架构中,微服务是完成一个单一的业务功能,这样做的好处是可以做到解耦,每个微服务可以独立演进.但是,一个应用可能会有多个微服 ...

  3. Spring Cloud构建微服务架构(一)服务注册与发现

    Spring Cloud简介 Spring Cloud是一个基于Spring Boot实现的云应用开发工具,它为基于JVM的云应用开发中的配置管理.服务发现.断路器.智能路由.微代理.控制总线.全局锁 ...

  4. Spring Cloud构建微服务架构(二)服务消费者

    Netflix Ribbon is an Inter Process Communication (IPC) cloud library. Ribbon primarily provides clie ...

  5. Spring Cloud构建微服务架构(五)服务网关

    通过之前几篇Spring Cloud中几个核心组件的介绍,我们已经可以构建一个简略的(不够完善)微服务架构了.比如下图所示: 我们使用Spring Cloud Netflix中的Eureka实现了服务 ...

  6. Spring Cloud构建微服务架构 - 服务网关

    通过之前几篇Spring Cloud中几个核心组件的介绍,我们已经可以构建一个简略的(不够完善)微服务架构了.比如下图所示: alt 我们使用Spring Cloud Netflix中的Eureka实 ...

  7. 基于Spring Cloud的微服务入门教程

    (本教程的原地址发布在本人的简书上:http://www.jianshu.com/p/947d57d042e7,若各位看官有什么问题或不同看法请在这里或简书留言,谢谢!) 本人也是前段时间才开始接触S ...

  8. 干货|基于 Spring Cloud 的微服务落地

    转自 微服务架构模式的核心在于如何识别服务的边界,设计出合理的微服务.但如果要将微服务架构运用到生产项目上,并且能够发挥该架构模式的重要作用,则需要微服务框架的支持. 在Java生态圈,目前使用较多的 ...

  9. 基于Spring Cloud的微服务落地

    微服务架构模式的核心在于如何识别服务的边界,设计出合理的微服务.但如果要将微服务架构运用到生产项目上,并且能够发挥该架构模式的重要作用,则需要微服务框架的支持. 在Java生态圈,目前使用较多的微服务 ...

随机推荐

  1. CSS3 小黄人案例

    使用 CSS3 和 HTML5 制作一个小黄人. 结构代码: <div class="wrap"> <!-- 头发 --> <div class=&q ...

  2. 【DATAGUARD】物理dg配置客户端无缝切换 (八.1)--Data Guard Broker 的配置

    [DATAGUARD]物理dg配置客户端无缝切换 (八.1)--Data Guard Broker 的配置 一.1  BLOG文档结构图       一.2  前言部分   一.2.1  导读 各位技 ...

  3. 【数据泵】EXPDP导出表结构

    [数据泵]EXPDP导出表结构(真实案例) BLOG文档结构图         因工作需要现需要把一个生产库下的元数据(表定义,索引定义,函数定义,包定义,存储过程)导出到测试库上,本来以为很简单的, ...

  4. 复盘一篇浅谈KNN的文章

    认识-什么是KNN KNN 即 K-nearest neighbors, 是一个hello world级别, 但被广泛使用的机器学习算法, 中文叫K近邻算法, 是一种基本的分类和回归方法. KNN既可 ...

  5. tp5中在where中使用in

    $where = array(); $where['id'] = array('in', $uid_str); $res = $this->db2->name('user')->wh ...

  6. Yii2模型介绍

    通过来说,我们可以把yii2中的Mdoel分为两种: 1)数据模型: 2)表单模型: 数据模型 数据模型关联数据表,用来实现对数据的操作; 一般数据模型放在common/models下: 表单模型 表 ...

  7. JVM——垃圾回收资格的判定

    一:判断一个对象是否已死 1:引用数算法:给对象加个引用计数器,被引用时加一,引用失效减一,在任何时刻一直为0的就说明不会被使用,但是由于一种情况的存在,导致这种算法不被JVM所考虑,在两个对象相互引 ...

  8. JSX 到 JS 的转换

    在写react代码的时候,大部分同学应该都是写JSX.因为相比于写纯JavaScript.写JSX为我们去写组件,比写一些在JavaScript当中写类似于html结构的这种代码是要方便非常非常多的, ...

  9. SparkSQL读写外部数据源-基本操作load和save

    数据源-基本操作load和save object BasicTest { def main(args: Array[String]): Unit = { val spark = SparkSessio ...

  10. Haskell语言学习笔记(95)Semiring

    semirings 模块 semirings 模块需要安装 $ cabal install semirings Installed semirings-0.2.0.1 Prelude> :m + ...