luoguP1198 [JSOI2008]最大数
https://www.luogu.org/problem/P1198
update!!!
经过老师的讲解,惊人的发现这题有用更简单数据结构维护的解法,而越简单的数据结构(如果能够用的话),越好(实现和思维上都会好一些)。
首先,这题是强制在线的,而这类题,如果你RE了,那么说明一般是你前面加密的东西求错了(比如这题的t)。
现在进入正题:
因为题目中需要输出的是后L个数的max,我们考虑两个数x,y, 满足x < y,如果高度还a[x] < a[y], 那么a[x]就一定不会成为答案(无论x,y在没在L内)。
所以我们维护一个保存着可能为答案的点的编号的单调队列,即维护a[i]递减的,关于 i 的单调队列(因为答案要的是后L个的,所以你要维护的是编号,并且还需要一个二分来找答案)。
题意
现在请求你维护一个数列,要求提供以下两种操作:
1、 查询操作。
语法:Q L
功能:查询当前数列中末尾L个数中的最大的数,并输出这个数的值。
限制:L不超过当前数列的长度。(L > 0)
2、 插入操作。
语法:A n
功能:将n加上t,其中t是最近一次查询操作的答案(如果还未执行过查询操作,则t=0),并将所得结果对一个固定的常数D取模,将所得答案插入到数列的末尾。
限制:n是整数(可能为负数)并且在长整范围内。
注意:初始时数列是空的,没有一个数。
操作数 <= \(2 * 10^5\)
分析
本来是找线段树的题目做的,但这题明显大材小用了....为什么呢?
我们注意到,它插入的时候只会把这个数插到数列的末尾,而且查询的时候也只是会查询后L个数。
于是,我们可以用一个反向的st表来维护(这个是在看了题解一之后想到的...惭愧...)(反向st即表示st[i] [j]为[i-(1<<j)+1, i]的最大值)
先想怎么插入,即插入之后需要改变哪些东西。好好想想“查询后L个数中的最大值”, 得出这个st表的右边界一定是n(数的个数), 所以,我们想到了反向st表,因为这样,我们唯一需要改变的量就是st[n] [...], n前面的数的st都不用修改,因为我们是反向的啊。
再想想怎么查询, 只要你把你脑子 思想倒过来,反向实现RMQ即可。
思考后参考
#include<cstdio>
#include<algorithm>
#include<iostream>
#include<cmath>
using namespace std;
#define ll long long
#define MAX 200000+9
int n,m;
ll f[MAX][21], a[MAX], D;//f[i][j]表示[i-(1<<j)+1, i]的最大值
void putback(int x) {
f[x][0] = a[x];// 别忘了放到最后
for(int i = 1; x-(1<<i)+1 >= 1; i++) {
f[x][i] = max(f[x][i-1], f[x-(1<<(i-1))][i-1]);
}
}
ll RMQ(int l, int r) {
int k = 0;
while((1<<(k+1) <= r-l+1)) k++;
return max(f[r][k], f[l+(1<<k)-1][k]);//始终是反向思考
}
int main() {
scanf("%d%lld",&m,&D);
char cmd;
ll x, t = 0;
for(int i = 1; i <= m; i++) {
cin>>cmd;
if(cmd == 'A') {
scanf("%lld",&x);
a[++n] = (x+t)%D;
putback(n);
} else {
int L;
scanf("%d", &L);
if(L == 1) {
printf("%lld\n", a[n]);
t = a[n];
continue;
}
ll ans;
ans = RMQ(n-L+1, n);
printf("%lld\n", ans);
t = ans;
}
}
return 0;
}
luoguP1198 [JSOI2008]最大数的更多相关文章
- [luoguP1198][JSOI2008] 最大数(线段树 || 单调栈)
题目传送门 1.线段树 线段树可以搞. 不过慢的要死1300+ms #include <cstdio> #include <iostream> using namespace ...
- BZOJ1012: [JSOI2008]最大数maxnumber [线段树 | 单调栈+二分]
1012: [JSOI2008]最大数maxnumber Time Limit: 3 Sec Memory Limit: 162 MBSubmit: 8748 Solved: 3835[Submi ...
- BZOJ-1012[JSOI2008]最大数maxnumber 线段树区间最值
这道题相对简单下面是题目: 1012: [JSOI2008]最大数maxnumber Time Limit: 3 Sec Memory Limit: 162 MB Submit: 6542 Solve ...
- 洛谷P1198 [JSOI2008]最大数
P1198 [JSOI2008]最大数 267通过 1.2K提交 题目提供者该用户不存在 标签线段树各省省选 难度提高+/省选- 提交该题 讨论 题解 记录 最新讨论 WA80的戳这QwQ BZOJ都 ...
- 【bzoj1012】[JSOI2008]最大数maxnumber
1012: [JSOI2008]最大数maxnumber Time Limit: 3 Sec Memory Limit: 162 MBSubmit: 8339 Solved: 3624[Submi ...
- Cogs 1844. [JSOI2008]最大数maxnumber
[JSOI2008]最大数maxnumber ★★ 输入文件:bzoj_1012.in 输出文件:bzoj_1012.out 简单对比 时间限制:3 s 内存限制:162 MB [题目描述] 现在请求 ...
- BZOJ 1012: [JSOI2008]最大数maxnumber【线段树单点更新求最值,单调队列,多解】
1012: [JSOI2008]最大数maxnumber Time Limit: 3 Sec Memory Limit: 162 MBSubmit: 10374 Solved: 4535[Subm ...
- [JSOI2008]最大数maxnumber
[JSOI2008]最大数maxnumber 标签: 线段树 单独队列 题目链接 题解 线段树裸题. 如果一直RE可能是你用的cin/cout. Code #include<cstdio> ...
- bzoj 1012: [JSOI2008]最大数maxnumber (线段树)
1012: [JSOI2008]最大数maxnumber Time Limit: 3 Sec Memory Limit: 162 MBSubmit: 13081 Solved: 5654[Subm ...
随机推荐
- python爬虫之深度爬取实例
写了一个之前没完成的项目,代码优化不够,速度有点慢,应该也有错误的地方,望大佬看了之后能给点建议......... 这是开始的url,先看一下它的网页结构:http://www.cymodel.net ...
- 【Ribbon篇四】Ribbon初步配置(2)
一. 微服务消费者改造 注:修改microservicecloud-consumer-dept-80工程 1. pom.xml添加依赖 <!-- eureka client --> < ...
- pandas-缺失值处理
import pandas as pd import numpy as np Step 1.加载数据集 # header=0以第一行作为列名 tip = pd.read_csv("lianx ...
- POJ3685Matrix(二分套二分)
传送门 题目大意:N*N的矩阵,a[i][j]=i*i+100000*i+j*j-100000*j+i*j,求矩阵中第K小. N<=5*10^4 题解: 打个表,发现每一列从上往下单调递增. 在 ...
- 机器学习之KNN
KNN做回归和分类的主要区别在于最后做预测时候的决策方式不同.KNN做分类预测时,一般是选择多数表决法,即训练集里和预测的样本特征最近的K个样本,预测为里面有最多类别数的类别.而KNN做回归时,一般是 ...
- UAC简介
用户帐户控制 (User Account Control) 是Windows Vista(及更高版本操作系统)中一组新的基础结构技术,可以帮助阻止恶意程序(有时也称为“恶意软件”)损坏系统,同时也可以 ...
- [2019BUAA软工助教]团队alpha得分总表
[2019BUAA软工助教]团队alpha得分总表 [2019BUAA软工助教]团队alpha得分总表 一.团队累计得分 累计得分图 得分总表 二.各项得分计算规则 介绍与采访 项目选择与NABCD ...
- (二十二)golang--时间和日期相关函数
时间的常量,可以获得指定时间单位 Unix和UnixNano 小例子:统计函数运行的时间:
- 1+x 证书 Web 前端开发 JavaScript 专项练习
官方QQ群 1+x 证书 Web 前端开发 JavaScript 专项练习 http://blog.zh66.club/index.php/archives/198/
- 生成 RSA 公钥和私钥的方法
在使用 RSA 加密算法时,需要使用到一对 公钥 和 私钥,生成 公钥 和 私钥 需要借助 openssl 这款工具,下载这款工具的地址如下: http://slproweb.com/products ...