JAVA并发-Condition
简介
在没有Lock之前,我们使用synchronized来控制同步,配合Object的wait()、notify()系列方法可以实现等待/通知模式。在Java SE5后,Java提供了Lock接口,相对于Synchronized而言,Lock提供了条件Condition,对线程的等待、唤醒操作更加详细和灵活。下图是Condition与Object的监视器方法的对比(摘自《Java并发编程的艺术》):

Condition提供了一系列的方法来对阻塞和唤醒线程:
- await() :造成当前线程在接到信号或被中断之前一直处于等待状态。
 - await(long time, TimeUnit unit) :造成当前线程在接到信号、被中断或到达指定等待时间之前一直处于等待状态。
 - awaitNanos(long nanosTimeout) :造成当前线程在接到信号、被中断或到达指定等待时间之前一直处于等待状态。返回值表示剩余时间,如果在nanosTimesout之前唤醒,那么返回值 = nanosTimeout - 消耗时间,如果返回值 <= 0 ,则可以认定它已经超时了。
 - awaitUninterruptibly() :造成当前线程在接到信号之前一直处于等待状态。【注意:该方法对中断不敏感】。
 - awaitUntil(Date deadline) :造成当前线程在接到信号、被中断或到达指定最后期限之前一直处于等待状态。如果没有到指定时间就被通知,则返回true,否则表示到了指定时间,返回返回false。
 - signal() :唤醒一个等待线程。该线程从等待方法返回前必须获得与Condition相关的锁。
 - signal()All :唤醒所有等待线程。能够从等待方法返回的线程必须获得与Condition相关的锁。
 
Condition是一种广义上的条件队列。他为线程提供了一种更为灵活的等待/通知模式,线程在调用await方法后执行挂起操作,直到线程等待的某个条件为真时才会被唤醒。Condition必须要配合锁一起使用,因为对共享状态变量的访问发生在多线程环境下。一个Condition的实例必须与一个Lock绑定,因此Condition一般都是作为Lock的内部实现。
Condtion的实现
获取一个Condition必须要通过Lock的newCondition()方法。该方法定义在接口Lock下面,返回的结果是绑定到此 Lock 实例的新 Condition 实例。Condition为一个接口,其下仅有一个实现类ConditionObject,由于Condition的操作需要获取相关的锁,而AQS则是同步锁的实现基础,所以ConditionObject则定义为AQS的内部类。定义如下:
public class ConditionObject implements Condition, java.io.Serializable {
}
等待队列
每个Condition对象都包含着一个FIFO队列,该队列是Condition对象通知/等待功能的关键。在队列中每一个节点都包含着一个线程引用,该线程就是在该Condition对象上等待的线程。我们看Condition的定义就明白了:
public class ConditionObject implements Condition, java.io.Serializable {
    private static final long serialVersionUID = 1173984872572414699L;
    //头节点
    private transient Node firstWaiter;
    //尾节点
    private transient Node lastWaiter;
    public ConditionObject() {
    }
    /** 省略方法 **/
}
从上面代码可以看出Condition拥有首节点(firstWaiter),尾节点(lastWaiter)。当前线程调用await()方法,将会以当前线程构造成一个节点(Node),并将节点加入到该队列的尾部。结构如下:

Node里面包含了当前线程的引用。Node定义与AQS的CLH同步队列的节点使用的都是同一个类(AbstractQueuedSynchronized.Node静态内部类)。
Condition的队列结构比CLH同步队列的结构简单些,新增过程较为简单只需要将原尾节点的nextWaiter指向新增节点,然后更新lastWaiter即可。
等待await
调用Condition的await()方法会使当前线程进入等待状态,同时会加入到Condition等待队列同时释放锁。当从await()方法返回时,当前线程一定是获取了Condition相关连的锁。
    public final void await() throws InterruptedException {
        // 当前线程中断
        if (Thread.interrupted())
            throw new InterruptedException();
        //当前线程加入等待队列
        Node node = addConditionWaiter();
        //释放锁
        long savedState = fullyRelease(node);
        int interruptMode = 0;
        /**
         * 检测此节点的线程是否在同步队上,如果不在,则说明该线程还不具备竞争锁的资格,则继续等待
         * 直到检测到此节点在同步队列上
         */
        while (!isOnSyncQueue(node)) {
            //线程挂起
            LockSupport.park(this);
            //如果已经中断了,则退出
            if ((interruptMode = checkInterruptWhileWaiting(node)) != 0)
                break;
        }
        //竞争同步状态
        if (acquireQueued(node, savedState) && interruptMode != THROW_IE)
            interruptMode = REINTERRUPT;
        //清理下条件队列中的不是在等待条件的节点
        if (node.nextWaiter != null) // clean up if cancelled
            unlinkCancelledWaiters();
        if (interruptMode != 0)
            reportInterruptAfterWait(interruptMode);
    }
此段代码的逻辑是:首先将当前线程新建一个节点同时加入到条件队列中,然后释放当前线程持有的同步状态。然后则是不断检测该节点代表的线程释放出现在CLH同步队列中(收到signal信号之后就会在AQS队列中检测到),如果不存在则一直挂起,否则参与竞争同步状态。
加入条件队列(addConditionWaiter())源码如下:
    private Node addConditionWaiter() {
        Node t = lastWaiter;    //尾节点
        //Node的节点状态如果不为CONDITION,则表示该节点不处于等待状态,需要清除节点
        if (t != null && t.waitStatus != Node.CONDITION) {
            //清除条件队列中所有状态不为Condition的节点
            unlinkCancelledWaiters();
            t = lastWaiter;
        }
        //当前线程新建节点,状态CONDITION
        Node node = new Node(Thread.currentThread(), Node.CONDITION);
        /**
         * 将该节点加入到条件队列中最后一个位置
         */
        if (t == null)
            firstWaiter = node;
        else
            t.nextWaiter = node;
        lastWaiter = node;
        return node;
    }
该方法主要是将当前线程加入到Condition条件队列中。当然在加入到尾节点之前会清楚所有状态不为Condition的节点。
fullyRelease(Node node),负责释放该线程持有的锁。
    final long fullyRelease(Node node) {
        boolean failed = true;
        try {
            //节点状态--其实就是持有锁的数量
            long savedState = getState();
            //释放锁
            if (release(savedState)) {
                failed = false;
                return savedState;
            } else {
                throw new IllegalMonitorStateException();
            }
        } finally {
            if (failed)
                node.waitStatus = Node.CANCELLED;
        }
    }
isOnSyncQueue(Node node):如果一个节点刚开始在条件队列上,现在在同步队列上获取锁则返回true
    final boolean isOnSyncQueue(Node node) {
        //状态为Condition,获取前驱节点为null,返回false
        if (node.waitStatus == Node.CONDITION || node.prev == null)
            return false;
        //后继节点不为null,肯定在CLH同步队列中
        if (node.next != null)
            return true;
        return findNodeFromTail(node);
    }
unlinkCancelledWaiters():负责将条件队列中状态不为Condition的节点删除
        private void unlinkCancelledWaiters() {
            Node t = firstWaiter;
            Node trail = null;
            while (t != null) {
                Node next = t.nextWaiter;
                if (t.waitStatus != Node.CONDITION) {
                    t.nextWaiter = null;
                    if (trail == null)
                        firstWaiter = next;
                    else
                        trail.nextWaiter = next;
                    if (next == null)
                        lastWaiter = trail;
                }
                else
                    trail = t;
                t = next;
            }
        }
通知signal
调用Condition的signal()方法,将会唤醒在等待队列中等待最长时间的节点(条件队列里的首节点),在唤醒节点前,会将节点移到CLH同步队列中。
    public final void signal() {
        //检测当前线程是否为拥有锁的独
        if (!isHeldExclusively())
            throw new IllegalMonitorStateException();
        //头节点,唤醒条件队列中的第一个节点
        Node first = firstWaiter;
        if (first != null)
            doSignal(first);    //唤醒
    }
该方法首先会判断当前线程是否已经获得了锁,这是前置条件。然后唤醒条件队列中的头节点。
doSignal(Node first):唤醒头节点
    private void doSignal(Node first) {
        do {
            //修改头结点,完成旧头结点的移出工作
            if ( (firstWaiter = first.nextWaiter) == null)
                lastWaiter = null;
            first.nextWaiter = null;
        } while (!transferForSignal(first) &&
                (first = firstWaiter) != null);
    }
doSignal(Node first)主要是做两件事:1.修改头节点,2.调用transferForSignal(Node first) 方法将节点移动到CLH同步队列中。transferForSignal(Node first)源码如下:
     final boolean transferForSignal(Node node) {
        //将该节点从状态CONDITION改变为初始状态0,
        if (!compareAndSetWaitStatus(node, Node.CONDITION, 0))
            return false;
        //将节点加入到syn队列中去,返回的是syn队列中node节点前面的一个节点
        Node p = enq(node);
        int ws = p.waitStatus;
        //如果结点p的状态为cancel 或者修改waitStatus失败,则直接唤醒
        if (ws > 0 || !compareAndSetWaitStatus(p, ws, Node.SIGNAL))
            LockSupport.unpark(node.thread);
        return true;
    }
整个通知的流程如下:
- 判断当前线程是否已经获取了锁,如果没有获取则直接抛出异常,因为获取锁为通知的前置条件。
 - 如果线程已经获取了锁,则将唤醒条件队列的首节点
 - 唤醒首节点是先将条件队列中的头节点移出,然后调用AQS的enq(Node node)方法将其安全地移到CLH同步队列中
 - 最后判断如果该节点的同步状态是否为Cancel,或者修改状态为Signal失败时,则直接调用LockSupport唤醒该节点的线程。
 
总结
等待队列:即ConditionObject构建的Node单向链表队列,一个lock可以有多个等待队列
同步队列:即AQS内部类Node构建的FIFO的双向链表队列,也叫CLH同步队列,一个lock只能有一个同步队列
一个线程获取锁后,通过调用Condition的await()方法,会将当前线程先加入到条件队列中,然后释放锁,最后通过isOnSyncQueue(Node node)方法不断自检看节点是否已经在CLH同步队列了,如果是则尝试获取锁,否则一直挂起。当线程调用signal()方法后,程序首先检查当前线程是否获取了锁,然后通过doSignal(Node first)方法唤醒等待队列的首节点。被唤醒的线程,将从await()方法中的while循环中退出来,然后调用acquireQueued()方法竞争同步状态。
图1

图2

上面这个gif动画中,等待队列,Condition队列描述有问题,其他挺好的。
图3
应用
下面是JAVA官方提供的生产消费模式案例:
import java.util.concurrent.locks.Condition;
import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock;
public class Main {
    public static void main(String[] args)  {
        final BoundedBuffer boundedBuffer = new BoundedBuffer();
        Thread t1 = new Thread(new Runnable() {
            @Override
            public void run() {
                System.out.println("t1 run");
                for (int i=0;i<20;i++) {
                    try {
                        System.out.println("putting..");
                        boundedBuffer.put(Integer.valueOf(i));
                    } catch (InterruptedException e) {
                        e.printStackTrace();
                    }
                }
            }
        }) ;
        Thread t2 = new Thread(new Runnable() {
            @Override
            public void run() {
                for (int i=0;i<20;i++) {
                    try {
                        Object val = boundedBuffer.take();
                        System.out.println(val);
                    } catch (InterruptedException e) {
                        e.printStackTrace();
                    }
                }
            }
        }) ;
        t1.start();
        t2.start();
    }
    /**
     * BoundedBuffer 是一个定长100的集合,当集合中没有元素时,take方法需要等待,直到有元素时才返回元素
     * 当其中的元素数达到最大值时,要等待直到元素被take之后才执行put的操作
     * @author yukaizhao
     *
     */
    static class BoundedBuffer {
        final Lock lock = new ReentrantLock();
        final Condition notFull = lock.newCondition();
        final Condition notEmpty = lock.newCondition();
        final Object[] items = new Object[100];
        int putptr, takeptr, count;
        public void put(Object x) throws InterruptedException {
            System .out.println("put wait lock");
            lock.lock();
            System.out.println("put get lock");
            try {
                while (count == items.length) {
                    System.out.println("buffer full, please wait");
                    notFull.await();
                }
                items[putptr] = x;
                if (++putptr == items.length)
                    putptr = 0;
                ++count;
                notEmpty.signal();
            } finally {
                lock.unlock();
            }
        }
        public Object take() throws InterruptedException {
            System.out.println("take wait lock");
            lock.lock();
            System.out.println("take get lock");
            try {
                while (count == 0) {
                    System.out.println("no elements, please wait");
                    notEmpty.await();
                }
                Object x = items[takeptr];
                if (++takeptr == items.length)
                    takeptr = 0;
                --count;
                notFull.signal();
                return x;
            } finally {
                lock.unlock();
            }
        }
    }
}
参考:
Java锁详解(二)------ LockSupport 与 Condition
深入剖析基于并发AQS的(独占锁)重入锁(ReetrantLock)及其Condition实现原理
JAVA并发-Condition的更多相关文章
- Java并发Condition接口
		
java.util.concurrent.locks.Condition接口提供一个线程挂起执行的能力,直到给定的条件为真. Condition对象必须绑定到Lock,并使用newCondition( ...
 - 【Java并发系列04】线程锁synchronized和Lock和volatile和Condition
		
img { border: solid 1px } 一.前言 多线程怎么防止竞争资源,即防止对同一资源进行并发操作,那就是使用加锁机制.这是Java并发编程中必须要理解的一个知识点.其实使用起来还是比 ...
 - Java并发编程:线程间协作的两种方式:wait、notify、notifyAll和Condition
		
Java并发编程:线程间协作的两种方式:wait.notify.notifyAll和Condition 在前面我们将了很多关于同步的问题,然而在现实中,需要线程之间的协作.比如说最经典的生产者-消费者 ...
 - java并发编程——通过ReentrantLock,Condition实现银行存取款
		
java.util.concurrent.locks包为锁和等待条件提供一个框架的接口和类,它不同于内置同步和监视器.该框架允许更灵活地使用锁和条件,但以更难用的语法为代价. Lock 接口 ...
 - java并发多线程显式锁Condition条件简介分析与监视器 多线程下篇(四)
		
Lock接口提供了方法Condition newCondition();用于获取对应锁的条件,可以在这个条件对象上调用监视器方法 可以理解为,原本借助于synchronized关键字以及锁对象,配备了 ...
 - Java并发编程原理与实战二十二:Condition的使用
		
Condition的使用 Condition用于实现条件锁,可以唤醒指定的阻塞线程.下面来实现一个多线程顺序打印a,b,c的例子. 先来看用wait和notify的实现: public class D ...
 - 19、Java并发编程:线程间协作的两种方式:wait、notify、notifyAll和Condition
		
Java并发编程:线程间协作的两种方式:wait.notify.notifyAll和Condition 在前面我们将了很多关于同步的问题,然而在现实中,需要线程之间的协作.比如说最经典的生产者-消费者 ...
 - Java并发(十一):Condition条件
		
先做总结: 1.为什么使用Condition条件? synchronized配合Object的wait().notify()系列方法可以实现等待/通知模式. Lock提供了条件Condition,对线 ...
 - 006 Java并发编程wait、notify、notifyAll和Condition
		
原文https://www.cnblogs.com/dolphin0520/p/3920385.html#4182690 Java并发编程:线程间协作的两种方式:wait.notify.notifyA ...
 
随机推荐
- Ubuntu16.04下安装Cmake-3.8.2并为其配置环境变量
			
下载安装包 首先我们到官网下载最新的cmake二进制安装包https://cmake.org/files/ 这里,我下载的是比较新的cmake-3.8.2-Linux-x86_64.tar.gz解压安 ...
 - Django2.2报错 django.core.exceptions.ImproperlyConfigured: mysqlclient 1.3.13 or newer is required; you have 0.9.3.
			
准备将 Django 连接到 MySQL,在命令行输入命令 python manage.py makemigrations 后报错: django.core.exceptions.Improperly ...
 - 近似计算一个对象在js占用内存
			
内存 在很久之前,我就想查看一个对象在JS里占用多少内存了,直到最近由于线上使用了需要计算从服务端传输数据的大小,让这个需求尤为强烈. 预备知识 我们现在使用的js是高级语言,它在内存细节之上建立一个 ...
 - linux 硬盘满了后,查看使用目录占用空间情况
			
cd 切换到目录, du -ah --max-depth=1 查看当前目录下的 文件夹 占用情况
 - 【新特性速递】树表格结构由单层 TR 改为 TR-TD-TABLE 层级嵌套!
			
由于历史原因,在之前实现树表格时,我们有点偷懒,本来应该是层级嵌套的树结构,被我们硬生生的拉平了,请看: 可以看到,basic目录的子节点和basic是在同一级别的,因为此目录尚未展开,所以这些子节点 ...
 - 深度解密Go语言之context
			
目录 什么是 context 为什么有 context context 底层实现原理 整体概览 接口 Context canceler 结构体 emptyCtx cancelCtx timerCtx ...
 - Web端即时通讯基础知识补课:一文搞懂跨域的所有问题!
			
本文原作者: Wizey,作者博客:http://wenshixin.gitee.io,即时通讯网收录时有改动,感谢原作者的无私分享. 1.引言 典型的Web端即时通讯技术应用场景,主要有以下两种形式 ...
 - 微信小程序跳转web-vie时提示appId无法读取:Cannot read property 'appId' of undefined
			
微信小程序报web-view错无法读取appId:Cannot read property 'appId' of undefined 问题描述: 我以前一直如下写代码没报错也都是可以使用的,并且小程序 ...
 - 运维相关指标数据采集并ES入仓 - 运维笔记
			
为了进行数字化IT治理,需要对一些应用进程相关指标进行采集并入库.收集到的应用指标数据最好要进行ES入仓,入到Kafka里面,并通过Kibana可视化展示. 需要进行采集的应用进程相关指标如下: ES ...
 - 【shell命令】$#、$*、$n分别表示的含义
			
$#.$*.$n分别表示的含义 1.[$0] 表示当前脚本的文件名: 2.[$n] 表示传递给脚本的第n个参数值(n为1~9): 3.[$*] 表示传递给脚本的所有参数(不包括脚本名称的参数): 4. ...