[LeetCode] 279. Perfect Squares 完全平方数
Given a positive integer n, find the least number of perfect square numbers (for example, 1, 4, 9, 16, ...
) which sum to n.
Example 1:
Input: n =12
Output: 3
Explanation:12 = 4 + 4 + 4.
Example 2:
Input: n =13
Output: 2
Explanation:13 = 4 + 9.
Credits:
Special thanks to @jianchao.li.fighter for adding this problem and creating all test cases.
又是超哥一个人辛苦的更新题目,一个人托起 LeetCode 免费题的一片天空啊,赞一个~ 这道题说是给我们一个正整数,求它最少能由几个完全平方数组成。这道题是考察四平方和定理,to be honest, 这是我第一次听说这个定理,天啦撸,我的数学是语文老师教的么?! 闲话不多扯,回来做题。先来看第一种很高效的方法,根据四平方和定理,任意一个正整数均可表示为4个整数的平方和,其实是可以表示为4个以内的平方数之和,那么就是说返回结果只有 1,2,3 或4其中的一个,首先我们将数字化简一下,由于一个数如果含有因子4,那么我们可以把4都去掉,并不影响结果,比如2和8,3和12等等,返回的结果都相同,读者可自行举更多的栗子。还有一个可以化简的地方就是,如果一个数除以8余7的话,那么肯定是由4个完全平方数组成,这里就不证明了,因为我也不会证明,读者可自行举例验证。那么做完两步后,一个很大的数有可能就会变得很小了,大大减少了运算时间,下面我们就来尝试的将其拆为两个平方数之和,如果拆成功了那么就会返回1或2,因为其中一个平方数可能为0. (注:由于输入的n是正整数,所以不存在两个平方数均为0的情况)。注意下面的 !!a + !!b 这个表达式,可能很多人不太理解这个的意思,其实很简单,感叹号!表示逻辑取反,那么一个正整数逻辑取反为0,再取反为1,所以用两个感叹号!!的作用就是看a和b是否为正整数,都为正整数的话返回2,只有一个是正整数的话返回1,参见代码如下:
解法一:
class Solution {
public:
int numSquares(int n) {
while (n % == ) n /= ;
if (n % == ) return ;
for (int a = ; a * a <= n; ++a) {
int b = sqrt(n - a * a);
if (a * a + b * b == n) {
return !!a + !!b;
}
}
return ;
}
};
这道题远不止这一种解法,我们还可以用动态规划 Dynamic Programming 来做,我们建立一个长度为 n+1 的一维dp数组,将第一个值初始化为0,其余值都初始化为 INT_MAX, i从0循环到n,j从1循环到 i+j*j <= n 的位置,然后每次更新 dp[i+j*j] 的值,动态更新 dp 数组,其中 dp[i] 表示正整数i能少能由多个完全平方数组成,那么我们求n,就是返回 dp[n] 即可,也就是 dp 数组的最后一个数字。需要注意的是这里的写法,i必须从0开始,j必须从1开始,因为我们的初衷是想用 dp[i] 来更新 dp[i + j * j],如果 i=0, j=1 了,那么 dp[i] 和 dp[i + j * j] 就相等了,怎么能用本身 dp 值加1来更新自身呢,参见代码如下:
解法二:
class Solution {
public:
int numSquares(int n) {
vector<int> dp(n + , INT_MAX);
dp[] = ;
for (int i = ; i <= n; ++i) {
for (int j = ; i + j * j <= n; ++j) {
dp[i + j * j] = min(dp[i + j * j], dp[i] + );
}
}
return dp.back();
}
};
下面再来看一种 DP 解法,这种解法跟上面有些不同,上面那种解法是初始化了整个长度为 n+1 的 dp 数字,但是初始化的顺序不定的,而这个种方法只初始化了第一个值为0,那么在循环里计算,每次增加一个 dp 数组的长度,里面那个 for 循环一次循环结束就算好下一个数由几个完全平方数组成,直到增加到第 n+1 个,返回即可,想更直观的看这两种DP方法的区别,建议每次循环后都打印出 dp 数字的值来观察其更新的顺序,参见代码如下:
解法三:
class Solution {
public:
int numSquares(int n) {
vector<int> dp(, );
while (dp.size() <= n) {
int m = dp.size(), val = INT_MAX;
for (int i = ; i * i <= m; ++i) {
val = min(val, dp[m - i * i] + );
}
dp.push_back(val);
}
return dp.back();
}
};
最后我们来介绍一种递归 Recursion 的解法,这种方法的好处是写法简洁,但是运算效率不敢恭维。我们的目的是遍历所有比n小的完全平方数,然后对n与完全平方数的差值递归调用函数,目的是不断更新最终结果,知道找到最小的那个,参见代码如下:
解法四:
class Solution {
public:
int numSquares(int n) {
int res = n, num = ;
while (num * num <= n) {
int a = n / (num * num), b = n % (num * num);
res = min(res, a + numSquares(b));
++num;
}
return res;
}
};
讨论:解法二三四的运算效率真的不高,强推解法一,高效又易懂,如果想强行优化后三个算法,可以将解法一的前两个 if 判断加到后三个的算法的开头,能很大的提高运算效率。
类似题目:
参考资料:
https://leetcode.com/problems/perfect-squares/
http://bookshadow.com/weblog/2015/09/09/leetcode-perfect-squares/
https://leetcode.com/problems/perfect-squares/discuss/71505/Simple-Java-DP-Solution
LeetCode All in One 题目讲解汇总(持续更新中...)
[LeetCode] 279. Perfect Squares 完全平方数的更多相关文章
- [LeetCode] 0279. Perfect Squares 完全平方数
题目 Given a positive integer n, find the least number of perfect square numbers (for example, 1, 4, 9 ...
- leetcode@ [279]Perfect Squares
https://leetcode.com/problems/perfect-squares/ Given a positive integer n, find the least number of ...
- (BFS) leetcode 279. Perfect Squares
Given a positive integer n, find the least number of perfect square numbers (for example, 1, 4, 9, 1 ...
- [leetcode] #279 Perfect Squares (medium)
原题链接 题意: 给一个非整数,算出其最少可以由几个完全平方数组成(1,4,9,16……) 思路: 可以得到一个状态转移方程 dp[i] = min(dp[i], dp[i - j * j] + ) ...
- [LeetCode 279.] Perfect Squres
LeetCode 279. Perfect Squres DP 是笨办法中的高效办法,又是一道可以被好办法打败的 DP 题. 题目描述 Given a positive integer n, find ...
- [LintCode] Perfect Squares 完全平方数
Given a positive integer n, find the least number of perfect square numbers (for example, 1, 4, 9, 1 ...
- [LeetCode] Perfect Squares 完全平方数
Given a positive integer n, find the least number of perfect square numbers (for example, 1, 4, 9, 1 ...
- 【LeetCode】279. Perfect Squares 解题报告(C++ & Java)
作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 四平方和定理 动态规划 日期 题目地址:https: ...
- 【leetcode】Perfect Squares (#279)
Given a positive integer n, find the least number of perfect square numbers (for example, 1, 4, 9, 1 ...
随机推荐
- PHP数学扩展函数BC
需要准确高精度计算的时候,如果直接计算会出现不准确的情况,要用BC函数. bcadd — 2个任意精度数字的加法计算 bccomp — 比较两个任意精度的数字 bcdiv — 2个任意精度的数字除法计 ...
- APP兼容性测试 (一) 机型选择概要
一.App兼容性问题有哪些 安装失败.启动失败.卸载失败,卸载不干净. 程序运行过程中闪退 部分控件显示不完整或者功能失效 屏幕显示异常 图片展示不全等 二.App兼容性测试的核心要点 测试软件是否能 ...
- Kafka 2.3 Producer (0.9以后版本适用)
kafka0.9版本以后用java重新编写了producer,废除了原来scala编写的版本. 这里直接使用最新2.3版本,0.9以后的版本都适用. 注意引用的包为:org.apache.kafka. ...
- yii2.0的学习之旅(一)
一. 通过composer安装yii2.0项目 *本文是根据您已经安装了composer (1)跳转到项目根目录 cd /xxxx/www (2)下载插件 composer global requir ...
- convert datatable to List<T>
public class DataConvert { public static List<T> ConvertDataTable<T>(DataTable dt) { Lis ...
- C# 之扩展方法
在编程过程中,有时由于新的需求,可能就会需要对类型进行修改,但当需要为类型添加新功能但并不拥有类型的已有代码时,就需要用到 扩展方法; 使用扩展方法的方式:创建一个新的类,这个类必须是静态类. 在这个 ...
- 你不知道的Golang map
在开发过程中,map是必不可少的数据结构,在Golang中,使用map或多或少会遇到与其他语言不一样的体验,比如访问不存在的元素会返回其类型的空值.map的大小究竟是多少,为什么会报"can ...
- Java生鲜电商平台-商品价格的设计与架构
Java生鲜电商平台-商品价格的设计与架构 说明:Java开源生鲜电商平台-商品价格的设计与架构,主要是对商品的价格进行研究与系统架构. 一.常见的电商价格 市场价(List Price):这个价格仅 ...
- SVN每日定时备份脚本
SVN每日定时备份脚本: @ECHO off REM SVN安装目录 SET SVN_HOME="D:\Program Files\VisualSVNServer" REM 版本库 ...
- 小鸟初学Shell编程(四)管道符
管道作用 管道实际上就是进程之间的一个通信工具,那么用在Linux命令中主要是方便两条命令互相之间可以相互通信. 管道符 管道符(匿名管道)是Shell编程经常用到的通信工具. 管道符是"| ...