Spark(五十三):Spark RPC初尝试使用
基本用法主要掌握一点就行:
master slave模式运用:driver 就是master,executor就是slave。
如果executor要想和driver交互必须拿到driver的EndpointRef,通过driver的EndpointRef来调接口访问。
driver启动时,会在driver中注册一个Endpoint服务,并暴露自己的ip和端口。executor端生成driver的EndpointRef,就主要需要两个参数就行:driver的host(ip)和port。
导入Maven依赖
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-core_2.11</artifactId>
<version>2.4.0</version>
</dependency>
定义RPC Server端的ip(localhost)。port(57992)、服务名称(hello-rpc-service)
object HelloRpcSettings {
val rpcName = "hello-rpc-service"
val port = 57992
val hostname="localhost" def getName() = {
rpcName
} def getPort(): Int = {
port
} def getHostname():String={
hostname
}
}
定义RPC的Endpoint类和发送数据类SayHi/SayBye
case class SayHi(msg: String) case class SayBye(msg: String) import org.apache.spark.rpc.{RpcCallContext, RpcEndpoint, RpcEnv} class HelloEndpoint(override val rpcEnv: RpcEnv) extends RpcEndpoint {
override def onStart(): Unit = {
println(rpcEnv.address)
println("start hello endpoint")
} override def receive: PartialFunction[Any, Unit] = {
case SayHi(msg) =>
println(s"receive $msg" )
} override def receiveAndReply(context: RpcCallContext): PartialFunction[Any, Unit] = {
case SayHi(msg) => {
println(s"receive $msg")
context.reply(s"hi, $msg")
}
case SayBye(msg) => {
println(s"receive $msg")
context.reply(s"bye, $msg")
}
} override def onStop(): Unit = {
println("stop hello endpoint")
}
}
定义RPC 服务提供者
import org.apache.spark.{SecurityManager, SparkConf, SparkContext, SparkEnv}
import org.apache.spark.rpc._
import org.apache.spark.sql.SparkSession object RpcServerTest {
def main(args: Array[String]): Unit = {
val conf: SparkConf = new SparkConf()
val sparkSession = SparkSession.builder().config(conf).master("local[*]").appName("test rpc").getOrCreate()
val sparkContext: SparkContext = sparkSession.sparkContext
val sparkEnv: SparkEnv = sparkContext.env val rpcEnv = RpcEnv.create(HelloRpcSettings.getName(), HelloRpcSettings.getHostname(), HelloRpcSettings.getHostname(), HelloRpcSettings.getPort(), conf,
sparkEnv.securityManager, 1, false) val helloEndpoint: RpcEndpoint = new HelloEndpoint(rpcEnv)
rpcEnv.setupEndpoint(HelloRpcSettings.getName(), helloEndpoint) rpcEnv.awaitTermination()
}
}
定义RPC服务使用者
import org.apache.spark.{SecurityManager, SparkConf, SparkContext, SparkEnv}
import org.apache.spark.rpc.{RpcAddress, RpcEndpointRef, RpcEnv, RpcEnvConfig}
import org.apache.spark.sql.{Dataset, Row, SparkSession} import scala.concurrent.duration.Duration
import scala.concurrent.{Await, Future} object RpcClientTest {
def main(args: Array[String]): Unit = {
val conf: SparkConf = new SparkConf()
val sparkSession = SparkSession.builder().config(conf).master("local[*]").appName("test rpc").getOrCreate()
val sparkContext: SparkContext = sparkSession.sparkContext
val sparkEnv: SparkEnv = sparkContext.env val rpcEnv: RpcEnv = RpcEnv.create(HelloRpcSettings.getName(),HelloRpcSettings.getHostname(),HelloRpcSettings.getPort(),conf,sparkEnv.securityManager,false)
val endPointRef: RpcEndpointRef = rpcEnv.setupEndpointRef(RpcAddress(HelloRpcSettings.getHostname(), HelloRpcSettings.getPort()), HelloRpcSettings.getName()) import scala.concurrent.ExecutionContext.Implicits.global endPointRef.send(SayHi("test send")) val future: Future[String] = endPointRef.ask[String](SayHi("neo"))
future.onComplete {
case scala.util.Success(value) => println(s"Got the result = $value")
case scala.util.Failure(e) => println(s"Got error: $e")
}
Await.result(future, Duration.apply("30s")) val res = endPointRef.askSync[String](SayBye("test askSync"))
println(res) sparkSession.stop()
} }
启动RPC 服务提供者
Using Spark's default log4j profile: org/apache/spark/log4j-defaults.properties
// :: INFO SparkContext: Running Spark version 2.4.
// :: WARN NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
// :: INFO SparkContext: Submitted application: test rpc
// :: INFO SecurityManager: Changing view acls to: boco
// :: INFO SecurityManager: Changing modify acls to: boco
// :: INFO SecurityManager: Changing view acls groups to:
// :: INFO SecurityManager: Changing modify acls groups to:
// :: INFO SecurityManager: SecurityManager: authentication disabled; ui acls disabled; users with view permissions: Set(boco); groups with view permissions: Set(); users with modify permissions: Set(boco); groups with modify permissions: Set()
// :: INFO Utils: Successfully started service 'sparkDriver' on port .
// :: INFO SparkEnv: Registering MapOutputTracker
// :: INFO SparkEnv: Registering BlockManagerMaster
// :: INFO BlockManagerMasterEndpoint: Using org.apache.spark.storage.DefaultTopologyMapper for getting topology information
// :: INFO BlockManagerMasterEndpoint: BlockManagerMasterEndpoint up
// :: INFO DiskBlockManager: Created local directory at C:\Users\boco\AppData\Local\Temp\blockmgr-7128dde8-9c46--bb72-c2161ba65bf7
// :: INFO MemoryStore: MemoryStore started with capacity 901.8 MB
// :: INFO SparkEnv: Registering OutputCommitCoordinator
// :: INFO Utils: Successfully started service 'SparkUI' on port .
// :: INFO SparkUI: Bound SparkUI to 0.0.0.0, and started at http://DESKTOP-JL4FSCV:4040
// :: INFO Executor: Starting executor ID driver on host localhost
// :: INFO Utils: Successfully started service 'org.apache.spark.network.netty.NettyBlockTransferService' on port .
// :: INFO NettyBlockTransferService: Server created on DESKTOP-JL4FSCV:
// :: INFO BlockManager: Using org.apache.spark.storage.RandomBlockReplicationPolicy for block replication policy
// :: INFO BlockManagerMaster: Registering BlockManager BlockManagerId(driver, DESKTOP-JL4FSCV, , None)
// :: INFO BlockManagerMasterEndpoint: Registering block manager DESKTOP-JL4FSCV: with 901.8 MB RAM, BlockManagerId(driver, DESKTOP-JL4FSCV, , None)
// :: INFO BlockManagerMaster: Registered BlockManager BlockManagerId(driver, DESKTOP-JL4FSCV, , None)
// :: INFO BlockManager: Initialized BlockManager: BlockManagerId(driver, DESKTOP-JL4FSCV, , None)
// :: INFO Utils: Successfully started service 'hello-rpc-service' on port .
localhost:
start hello endpoint
启动RPC 服务使用者
Using Spark's default log4j profile: org/apache/spark/log4j-defaults.properties
// :: INFO SparkContext: Running Spark version 2.4.
// :: WARN NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
// :: INFO SparkContext: Submitted application: test rpc
// :: INFO SecurityManager: Changing view acls to: boco
// :: INFO SecurityManager: Changing modify acls to: boco
// :: INFO SecurityManager: Changing view acls groups to:
// :: INFO SecurityManager: Changing modify acls groups to:
// :: INFO SecurityManager: SecurityManager: authentication disabled; ui acls disabled; users with view permissions: Set(boco); groups with view permissions: Set(); users with modify permissions: Set(boco); groups with modify permissions: Set()
// :: INFO Utils: Successfully started service 'sparkDriver' on port .
// :: INFO SparkEnv: Registering MapOutputTracker
// :: INFO SparkEnv: Registering BlockManagerMaster
// :: INFO BlockManagerMasterEndpoint: Using org.apache.spark.storage.DefaultTopologyMapper for getting topology information
// :: INFO BlockManagerMasterEndpoint: BlockManagerMasterEndpoint up
// :: INFO DiskBlockManager: Created local directory at C:\Users\boco\AppData\Local\Temp\blockmgr-6a0b8e7f-86d2-4bb8-b45c-7c04deabcb91
// :: INFO MemoryStore: MemoryStore started with capacity 901.8 MB
// :: INFO SparkEnv: Registering OutputCommitCoordinator
// :: WARN Utils: Service 'SparkUI' could not bind on port . Attempting port .
// :: INFO Utils: Successfully started service 'SparkUI' on port .
// :: INFO SparkUI: Bound SparkUI to 0.0.0.0, and started at http://DESKTOP-JL4FSCV:4041
// :: INFO Executor: Starting executor ID driver on host localhost
// :: INFO Utils: Successfully started service 'org.apache.spark.network.netty.NettyBlockTransferService' on port .
// :: INFO NettyBlockTransferService: Server created on DESKTOP-JL4FSCV:
// :: INFO BlockManager: Using org.apache.spark.storage.RandomBlockReplicationPolicy for block replication policy
// :: INFO BlockManagerMaster: Registering BlockManager BlockManagerId(driver, DESKTOP-JL4FSCV, , None)
// :: INFO BlockManagerMasterEndpoint: Registering block manager DESKTOP-JL4FSCV: with 901.8 MB RAM, BlockManagerId(driver, DESKTOP-JL4FSCV, , None)
// :: INFO BlockManagerMaster: Registered BlockManager BlockManagerId(driver, DESKTOP-JL4FSCV, , None)
// :: INFO BlockManager: Initialized BlockManager: BlockManagerId(driver, DESKTOP-JL4FSCV, , None)
// :: WARN Utils: Service 'hello-rpc-service' could not bind on port . Attempting port .
// :: INFO Utils: Successfully started service 'hello-rpc-service' on port .
// :: INFO TransportClientFactory: Successfully created connection to localhost/127.0.0.1: after ms ( ms spent in bootstraps)
bye, test askSync
Got the result = hi, neo
// :: INFO SparkUI: Stopped Spark web UI at http://DESKTOP-JL4FSCV:4041
// :: INFO MapOutputTrackerMasterEndpoint: MapOutputTrackerMasterEndpoint stopped!
// :: INFO MemoryStore: MemoryStore cleared
// :: INFO BlockManager: BlockManager stopped
// :: INFO BlockManagerMaster: BlockManagerMaster stopped
// :: INFO OutputCommitCoordinator$OutputCommitCoordinatorEndpoint: OutputCommitCoordinator stopped!
// :: INFO SparkContext: Successfully stopped SparkContext
// :: INFO ShutdownHookManager: Shutdown hook called
// :: INFO ShutdownHookManager: Deleting directory
此时 RPC 服务提供者打印信息如下:
receive test send
receive neo
receive test askSync
// :: WARN TransportChannelHandler: Exception in connection from /127.0.0.1:
java.io.IOException: 远程主机强迫关闭了一个现有的连接。
at sun.nio.ch.SocketDispatcher.read0(Native Method)
at sun.nio.ch.SocketDispatcher.read(SocketDispatcher.java:)
at sun.nio.ch.IOUtil.readIntoNativeBuffer(IOUtil.java:)
at sun.nio.ch.IOUtil.read(IOUtil.java:)
at sun.nio.ch.SocketChannelImpl.read(SocketChannelImpl.java:)
at io.netty.buffer.PooledUnsafeDirectByteBuf.setBytes(PooledUnsafeDirectByteBuf.java:)
at io.netty.buffer.AbstractByteBuf.writeBytes(AbstractByteBuf.java:)
at io.netty.channel.socket.nio.NioSocketChannel.doReadBytes(NioSocketChannel.java:)
at io.netty.channel.nio.AbstractNioByteChannel$NioByteUnsafe.read(AbstractNioByteChannel.java:)
at io.netty.channel.nio.NioEventLoop.processSelectedKey(NioEventLoop.java:)
at io.netty.channel.nio.NioEventLoop.processSelectedKeysOptimized(NioEventLoop.java:)
at io.netty.channel.nio.NioEventLoop.processSelectedKeys(NioEventLoop.java:)
at io.netty.channel.nio.NioEventLoop.run(NioEventLoop.java:)
at io.netty.util.concurrent.SingleThreadEventExecutor$.run(SingleThreadEventExecutor.java:)
at io.netty.util.concurrent.DefaultThreadFactory$DefaultRunnableDecorator.run(DefaultThreadFactory.java:)
at java.lang.Thread.run(Thread.java:)
Spark(五十三):Spark RPC初尝试使用的更多相关文章
- Spark学习之路 (五)Spark伪分布式安装
一.JDK的安装 JDK使用root用户安装 1.1 上传安装包并解压 [root@hadoop1 soft]# tar -zxvf jdk-8u73-linux-x64.tar.gz -C /usr ...
- Spark(五) -- Spark Streaming介绍与基本执行过程
Spark Streaming作为Spark上的四大子框架之一,肩负着实时流计算的重大责任 而相对于另外一个当下十分流行的实时流计算处理框架Storm,Spark Streaming有何优点?又有何不 ...
- Spark2.2(三十三):Spark Streaming和Spark Structured Streaming更新broadcast总结(一)
背景: 需要在spark2.2.0更新broadcast中的内容,网上也搜索了不少文章,都在讲解spark streaming中如何更新,但没有spark structured streaming更新 ...
- Spark入门(五)--Spark的reduce和reduceByKey
reduce和reduceByKey的区别 reduce和reduceByKey是spark中使用地非常频繁的,在字数统计中,可以看到reduceByKey的经典使用.那么reduce和reduceB ...
- 【Spark 内核】 Spark 内核解析-上
Spark内核泛指Spark的核心运行机制,包括Spark核心组件的运行机制.Spark任务调度机制.Spark内存管理机制.Spark核心功能的运行原理等,熟练掌握Spark内核原理,能够帮助我们更 ...
- 【Spark 内核】 Spark 内核解析-下
Spark内核泛指Spark的核心运行机制,包括Spark核心组件的运行机制.Spark任务调度机制.Spark内存管理机制.Spark核心功能的运行原理等,熟练掌握Spark内核原理,能够帮助我们更 ...
- 初步了解Spark生态系统及Spark Streaming
一. 场景 ◆ Spark[4]: Scope: a MapReduce-like cluster computing framework designed for low-laten ...
- R语言爬虫初尝试-基于RVEST包学习
注意:这文章是2月份写的,拉勾网早改版了,代码已经失效了,大家意思意思就好,主要看代码的使用方法吧.. 最近一直在用且有维护的另一个爬虫是KINDLE 特价书爬虫,blog地址见此: http://w ...
- 【译】Spark官方文档——Spark Configuration(Spark配置)
注重版权,尊重他人劳动 转帖注明原文地址:http://www.cnblogs.com/vincent-hv/p/3316502.html Spark主要提供三种位置配置系统: 环境变量:用来启动 ...
随机推荐
- 非洲affrike单词
affrike 英文单词,含义是非洲,非洲大陆. 中文名:非洲 外文名:affrike 目录 释义 affrike noun名词 非洲,也用做africa 1.Word Origin and Hist ...
- 【技巧】如何使用客户端发布BLOG+如何快速发布微信公众号文章
[技巧]如何使用客户端发布BLOG+如何快速发布微信公众号文章 1 BLOG文档结构图 2 前言部分 2.1 导读和注意事项 各位技术爱好者,看完本文后,你可以掌握如下的技能,也 ...
- JavaScript: 详解正则表达式之二
在上一篇文章中我们讲了正则表达式的基本用法,接下来博主想聊聊其中的细节,今天就从正则修饰符开始吧. 正则修饰符又称为正则标记(flags),它会对正则的匹配规则做限定,进而影响匹配的最终结果.在上次的 ...
- Python的csv文件(csv模块)和ini文件(configparser模块)处理
Python的csv文本文件(csv模块)和ini文本文件(configparser模块)处理 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.csv文件 1>.CSV文件 ...
- window安装gcc、g++、make等编译环境
1. MinGW官网下载:http://www.mingw.org 点击右上角Downloads 点击下载 mingw-get-setup.exe 2. 百度网盘(2019年4月从官网下 ...
- linux系统中如何查看最后一封mail
1. mail命令查看邮件列表 2.file 命令查看一共多少封邮件 3.直接键入278 查看最后一封邮件内容 4. 输入q 从邮件阅读模式退出
- Win10 微软远程桌面很模糊是为什么?
今天又查了一下,解决了问题,是 Intel 集显驱动引起的.在桌面右键 => 图形属性 => 在蓝色的 Intel 核芯显卡控制面板上选择“ 3D ” => 在“保守形态学抗锯齿”中 ...
- Kotlin函数式编程范式深入剖析
继续学习Kotlin的函数式编程,先定义一个高阶函数: 其实上面这种调用方式在Kotlin用得不多,反而是将Lambda表达式放到方法体中使用得较频繁,如下: 接下来定义一个扩展方法,用来对字符串进行 ...
- UVA1537 Picnic Planning(思维+最小生成树)
将1号点从图中去掉过后,图会形成几个连通块,那么我们首先可以在这些连通块内部求最小生成树. 假设有\(tot\)个连通块,那么我们会从1号点至少选\(tot\)个出边,使得图连通.这时我们贪心地选择最 ...
- mybatis配置打印sql
mybatis配置打印sql: <settings> <setting name="logImpl" value="STDOUT_LOGGING&quo ...