You are given N(1<=N<=100000) integers. Each integer is square free(meaning it has no divisor which is a square number except 1) and all the prime factors are less than 50. You have to find out the number of pairs are there such that their gcd is 1 or a prime number. Note that (i,j) and (j,i) are different pairs if i and j are different.

Input

The first line contains an integer T(1<=T<=10) , the number of tests. Then T tests follows. First line of each tests contain an integer N. The next line follows N integers.

Output

Print T lines. In each line print the required result.

Sample Input

Sample Output

1

3

2 1 6

8

Explanation

gcd(1,2)=1

gcd(2,1)=1

gcd(2,6)=2, a prime number

gcd(6,2)=2, a prime number

gcd(1,6)=1

gcd(6,1)=1

gcd(2,2)=2, a prime number

gcd(1,1)=1

So, total of 8 pairs.

题意:给定数组a[],求多少对(i,j),使得a[i],a[j]互质或者gcd是质数,保证a[]只有小于50的素因子,而且不含平方因子。

思路:注意到只有15个素数,开始想到了用二进制来找互质的个数和有一个素因子的个数,但是复杂度好像还是过不去。第二天忍不住参考了vj上面的代码。。。

主要问题在于,如何快速地求一个二进制的子集,即对i,求所有的j,j<=i&&(i|j)==i。后面地就不难。

前辈写的是:

    for(i=;i<M;i++){
for(j=i;;j=(j-)&i){
s[i]+=num[j]; //关键,得到子集
if(!j) break;
}
}

时间大概是1.4e7。

int times=;
for(i=;i<M;i++){
for(j=i;;j=(j-)&i){
times++;
if(!j) break;
}
}
cout<<times<<endl;

。。。注意把0也要累加进去。

#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<iostream>
#include<algorithm>
#define ll long long
using namespace std;
const int M=<<;
int num[M],s[M];
int p[]={,,,,,,,,,,,,,,};
int main()
{
int T,N,i,j,tmp; ll ans,x;
scanf("%d",&T);
while(T--){
scanf("%d",&N);
memset(num,,sizeof(num));
memset(s,,sizeof(s));
for(i=;i<=N;i++){
scanf("%lld",&x); tmp=;
for(j=;j<;j++) if(x%p[j]==) tmp+=<<j;
num[tmp]++;
}
for(i=;i<M;i++){
for(j=i;;j=(j-)&i){
s[i]+=num[j]; //关键,得到子集
if(!j) break;
}
} ans=;
for(i=;i<M;i++){
ans+=(ll)num[i]*s[i^(M-)];//互质
for(j=;j<;j++){ //刚好有一个素因子
if(i&<<j){
ans+=(ll)num[i]*(s[i^(M-)^(<<j)]-s[i^(M-)]);//减法保证这个素因子不被减去
}
}
}
cout<<ans<<endl;
}
return ;
}

SPOJ:NO GCD (求集合&秒啊)的更多相关文章

  1. 求集合中选一个数与当前值进行位运算的max

    求集合中选一个数与当前值进行位运算的max 这是一个听来的神仙东西. 先确定一下值域把,大概\(2^{16}\),再大点也可以,但是这里就只是写写,所以无所谓啦. 我们先看看如果暴力求怎么做,位运算需 ...

  2. hdu 1856 求集合里元素的个数 输出最大的个数是多少

    求集合里元素的个数 输出最大的个数是多少 Sample Input41 23 45 61 641 23 45 67 8 Sample Output42 # include <iostream&g ...

  3. SQL_求集合中每天最大时间记录的总和

    --问题求 集合中每天最大时间的总和 表中的数据 列: 用户 分数 时间 A 2 2014-01-01 01:00:00 A 2 2014-01-01 02:00:00 A 2 2014-01-01 ...

  4. DFS算法-求集合的所有子集

    目录 1. 题目来源 2. 普通方法 1. 思路 2. 代码 3. 运行结果 3. DFS算法 1. 概念 2. 解题思路 3. 代码 4. 运行结果 4. 对比 1. 题目来源 牛客网,集合的所有子 ...

  5. JAVA求集合中的组合

    好几个月没弄代码了,今天弄个求组合的DEMO 思路是将集合的每个值对照一个索引,索引大小是集合的大小+2.索引默认为[000...000],当组合后选取的组合值demo为[0100..00].然后根据 ...

  6. hdu5175 gcd 求约数

    题意:求满足条件GCD(N,M) = N XOR M的M的个数 sol:和uva那题挺像的.若gcd(a,b)=a xor b=c,则b=a-c 暴力枚举N的所有约数K,令M=NxorK,再判断gcd ...

  7. BC68(HD5606) 并查集+求集合元素

    tree  Accepts: 143  Submissions: 807  Time Limit: 2000/1000 MS (Java/Others)  Memory Limit: 65536/65 ...

  8. spoj 3871. GCD Extreme 欧拉+积性函数

    3871. GCD Extreme Problem code: GCDEX Given the value of N, you will have to find the value of G. Th ...

  9. GCD求最大公约数

    求最大公约数哪个强,果断GCD,非递归版本和递归版本如下: #include<iostream> using namespace std; int gcd(int a, int b){ / ...

随机推荐

  1. HDU4850 构造一个长度为n的串,要求任意长度为4的子串不相同

    n<=50W.(使用26个字母) 构造方法:26个,最多构造出26^4种不同的串,长度最长是26^4+3,大于是输出"impossble",用四维数组判重.每次向前构造一位( ...

  2. T1046 旅行家的预算 codevs

    http://codevs.cn/problem/1046/ 题目描述 Description 一个旅行家想驾驶汽车以最少的费用从一个城市到另一个城市(假设出发时油箱是空的).给定两个城市之间的距离D ...

  3. 洛谷——P2049 魔术棋子

    P2049 魔术棋子 题目描述 在一个M*N的魔术棋盘中,每个格子中均有一个整数,当棋子走进这个格子中,则此棋子上的数会被乘以此格子中的数.一个棋子从左上角走到右下角,只能向右或向下行动,请问此棋子走 ...

  4. HUD 1506 Largest Rectangle in a Histogram

    Largest Rectangle in a Histogram Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 ...

  5. 将文件从已Root Android手机中copy出来的几个cmd窗口命令

    将文件从已Root Android手机中copy出来的几个cmd窗口命令: 以shell身份登录adbadb shell进入adb后切换至root用户su更改文件的所属chown shell *更改文 ...

  6. iOS 内存管理实践

    内存管理实践 尽管基本的概念在内存管理策略文章中简单得阐述了,但是还有一些实用的步骤让你更容易管理内存:有助于确保你的程序最大限度地减少资源需求的同时,保持可靠和强大. 使用“访问器方法”让内存管理更 ...

  7. C/C++二进制读写png文件

    以下代码只有最简单的读写.地址定位啥的,个别注释中有.如果要改动png的格式甚么的就要再了解一下png的数据结构如果要十进制的话就跟着注释改一下: /*! * \file CC++二进制读写png文件 ...

  8. Solidworks如何显示装饰螺纹线

    1 工具-选项   2 文档属性-上色的装饰螺纹线   3 这样我再插入装饰螺纹线的时候就有效果了

  9. chrome.declarativeWebRequest

    chrome.declarativeWebRequest 清单文件 规则 条件与操作的求值 使用优先级覆盖规则 类型 HeaderFilter RequestMatcher CancelRequest ...

  10. Metasploit学习笔记之——情报搜集

    1.情报搜集 1.1外围信息搜索 1.1.1通过DNS和IP地址挖掘目标网络信息 (1)whois域名注冊信息查询(BT5.kali专有):root@kali:~# whois testfire.ne ...