洛谷P4141消失之物(背包经典题)——Chemist
题目地址:https://www.luogu.org/problemnew/show/P4141
分析:这题当然可以直接暴力枚举去掉哪一个物品,然后每次暴力跑一遍背包,时间复杂度为O(m*n^2),显然超时。由于算去掉哪一个物品比较复杂,我们可以考虑容斥,算出他的补集,也就是选这个物品的方案数,然后用全集减去他的补集得到答案。算全集的过程就是跑一遍01背包,时间复杂度O(n^2),然后枚举去掉的物品i,再枚举背包的容积就j,算选择这个物品凑出这个容积的方案数就相当于算凑出j-w[i]的方案数,然后再强制选择一个i物品,用前面第一遍背包预处理求出的答案减去这个就是最终答案。然而我们还需要考虑一种情况,就是当前枚举的容积小于i物品的体积,也就是说在凑出j体积的背包时一直都没有选择i物品,也就不能去掉它,答案就是前面01背包预处理的值。
代码:
#include<bits/stdc++.h>
using namespace std;
const int M=2e3+10;
int n,m,w[M],f[M],g[M];
int main()
{
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++)
scanf("%d",&w[i]);
f[0]=1;
//01背包:
for(int i=1;i<=n;i++)
for(int j=m;j>=w[i];j--)
f[j]=(f[j]+f[j-w[i]])%10;
for(int i=1;i<=n;i++)
{
memset(g,0,sizeof(g));
g[0]=1;
for(int j=1;j<=m;j++)
{
if(j>=w[i])g[j]=(f[j]-g[j-w[i]]+10)%10;
else g[j]=f[j];
printf("%d",g[j]);
}
puts("");
}
return 0;
}
洛谷P4141消失之物(背包经典题)——Chemist的更多相关文章
- 洛谷P4141 消失之物——背包
题目:https://www.luogu.org/problemnew/show/P4141 竟然是容斥:不选 i 物品只需减去选了 i 物品的方案: 范围原来是2*10^3而不是2*103啊... ...
- [洛谷P4141] 消失之物「背包DP」
暴力:暴力枚举少了哪个,下面套一个01背包 f[i][j]表示到了i物品,用了j容量的背包时的方案数,f[i][j]=f[i-1][j]+f[i-1][j-w[i]]O(n^3) 优化:不考虑消失的, ...
- 洛谷P4141消失之物
题目描述 ftiasch 有 N 个物品, 体积分别是 W1, W2, …, WN. 由于她的疏忽, 第 i 个物品丢失了. “要使用剩下的 N – 1 物品装满容积为 x 的背包,有几种方法呢?” ...
- 洛谷P4141 消失之物 题解 背包问题扩展
题目链接:https://www.luogu.com.cn/problem/P4141 题目大意: 有 \(n\) 件物品,求第 \(i\) 件物品不能选的时候(\(i\) 从 \(1\) 到 \(n ...
- Luogu P4141 消失之物 背包 分治
题意:给出$n$个物品的体积和最大背包容量$m$,求去掉一个物品$i$后,装满体积为$w\in [1,m]$背包的方案数. 有 N 个物品, 体积分别是 W1, W2, …, WN. 由于她的疏忽, ...
- P1048 采药(洛谷,动态规划递推,01背包原题)
题目直接放链接 P1048 采药 这题只是01背包+背景故事而已 原题来的 PS:我写了一篇很详细的01背包说明,如果下面ac代码有看不懂的地方可以去看看 对01背包的分析与理解(图文) 下面上ac代 ...
- 洛谷P1466 集合 Subset Sums_01背包水题
不多解释,适当刷刷水… Code: #include<cstdio> #include<algorithm> using namespace std; const int ma ...
- P4141 消失之物
目录 链接 思路 代码 链接 P4141 消失之物 思路 f[N];//表示删掉物品后能出现容积为i的方案数 a[N];//单纯0-1背包的方案数asd 那么就先求出a[i]来,然后转移就是 if(j ...
- 洛谷 P2014 选课(树形背包)
洛谷 P2014 选课(树形背包) 思路 题面:洛谷 P2014 如题这种有依赖性的任务可以用一棵树表示,因为一个儿子要访问到就必须先访问到父亲.然后,本来本题所有树是森林(没有共同祖先),但是题中的 ...
随机推荐
- hdu6110(线段树+lca)
题目 http://acm.hdu.edu.cn/showproblem.php?pid=6110 分析 注意到,若干条路径的交一定也是条路径 我们可以维护一个线段树,seg[l..r]存着第l条~第 ...
- 转: ORACLE存储过程笔记2----运算符和表达式
运算符和表达式 关系运算 =等于<>,!=不等于<小于>大于<=小于等于>=大于等于 一般运算 +加-减*乘/除:=赋值号=>关系号. ...
- Win7 SP1 安装SQL Server 2012时提示“此计算机上的操作系统不符合 SQL Server 2012的最低要求”
- 数据库(Mysql)背后的数据结构-学习
来吧,用这三篇文章夯实对Mysql的理解吧. 关于数据库索引及其优化,更多可参见此文:http://www.cnblogs.com/pkuoliver/archive/2011/08/17/mass- ...
- simple-todo: 一个简易的 todo 程序 - django版
今天无意间看到 simple-todo: 一个简易的 todo 程序 - web.py 中文教程 ,然后发现竟然有好多的版本 http://simple-is-better.com/news/tag ...
- chapter1:using neural nets to recognize handwritten digits
two important types of artificial neuron :the perceptron and the sigmoid neuron Perceptrons 感知机的输入个数 ...
- How do you check if a variable is an array in JavaScript? [duplicate]
https://stackoverflow.com/questions/767486/how-do-you-check-if-a-variable-is-an-array-in-javascript ...
- Linux如何更新软件源
Linux软件源的设置方法 1 打开数据源配置文件 vi /etc/apt/sources.list 添加相关的数据源,可以选择以下的数据源,不要写太多,否则会影响更新速度. 之后使用ap ...
- Eclipse配置中文(汉化)
1.首先打开网址:http://www.eclipse.org/babel/downloads.php 然后查看安装以及版本选择 关于安装存储库,去这里查看 我选的是最新的版本:oxygen 未FQ请 ...
- 【求建议】毕业之声——信院IT类毕业学子经验分享交流会
一:缘由 在和非常多学子交流,及上课的经历中,发现一个非常普遍的现象:部分大一学生即失去了对学习.对专业的兴趣.有人在迷茫之后奋起直追.从而珍惜利用不多的大学时光努力提高自己.有人在迷茫中沉沦,沉迷于 ...