codeforces 553 A Kyoya and Colored Balls
这个题。比赛的时候一直在往dp的方向想,可是总有一个组合数学的部分没办法求,
纯粹组合数学撸,也想不到办法……
事实上,非常显然。。
从后往前推,把第k种颜色放在最后一个,剩下的k球。还有C(剩余的位置,k球的总数目-1)种放法
然后讨论第k-1种。。。推下去就好了
可是当时没想到……
这里要求组合数。因为比較大。用乘法逆元。。。
当然直接套lucas也是能够的。
。。。
2 seconds
256 megabytes
standard input
standard output
Kyoya Ootori has a bag with n colored balls that are colored with
k different colors. The colors are labeled from
1 to k. Balls of the same color are indistinguishable. He draws balls from the bag one by one until the bag is empty. He noticed that he drew the last ball of color
i before drawing the last ball of color
i + 1 for all i from
1 to k - 1. Now he wonders how many different ways this can happen.
The first line of input will have one integer k (1 ≤ k ≤ 1000) the number of colors.
Then, k lines will follow. The
i-th line will contain ci, the number of balls of the
i-th color (1 ≤ ci ≤ 1000).
The total number of balls doesn't exceed 1000.
A single integer, the number of ways that Kyoya can draw the balls from the bag as described in the statement, modulo
1 000 000 007.
3
2
2
1
3
4
1
2
3
4
1680
In the first sample, we have 2 balls of color 1, 2 balls of color 2, and 1 ball of color 3. The three ways for Kyoya are:
1 2 1 2 3
1 1 2 2 3
2 1 1 2 3
#include<iostream>
using namespace std;
typedef long long ll;
const ll mod=1000000007;
ll qpow(ll a,ll b)
{
ll ans=1,c=a;
while(b)
{
if(b&1)
ans=ans*c%mod;
b>>=1;
c=c*c%mod;
}
return ans;
}
ll fac[1000010];
ll work(int a,int b)
{
return fac[a]*qpow(fac[b]*fac[a-b]%mod,mod-2)%mod;
}
int a[1010];
int main()
{
fac[0]=1;
for(int i=1;i<=1000000;i++)
fac[i]=fac[i-1]*i%mod;
int n;
cin>>n;
int sum=0;
for(int i=0;i<n;i++)
{
cin>>a[i];
sum+=a[i];
}
ll ans=1;
for(int i=n-1;i>-1;i--)
{
ans=ans*work(sum-1,a[i]-1)%mod;
sum-=a[i];
}
cout<<ans;
}
codeforces 553 A Kyoya and Colored Balls的更多相关文章
- codeforces 553A A. Kyoya and Colored Balls(组合数学+dp)
题目链接: A. Kyoya and Colored Balls time limit per test 2 seconds memory limit per test 256 megabytes i ...
- 【47.95%】【codeforces 554C】Kyoya and Colored Balls
time limit per test2 seconds memory limit per test256 megabytes inputstandard input outputstandard o ...
- Codeforces Round #309 (Div. 2) C. Kyoya and Colored Balls 排列组合
C. Kyoya and Colored Balls Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contes ...
- C. Kyoya and Colored Balls(Codeforces Round #309 (Div. 2))
C. Kyoya and Colored Balls Kyoya Ootori has a bag with n colored balls that are colored with k diffe ...
- Codeforces A. Kyoya and Colored Balls(分步组合)
题目描述: Kyoya and Colored Balls time limit per test 2 seconds memory limit per test 256 megabytes inpu ...
- CF-weekly4 F. Kyoya and Colored Balls
https://codeforces.com/gym/253910/problem/F F. Kyoya and Colored Balls time limit per test 2 seconds ...
- Codeforces554 C Kyoya and Colored Balls
C. Kyoya and Colored Balls Time Limit: 2000ms Memory Limit: 262144KB 64-bit integer IO format: %I64d ...
- Kyoya and Colored Balls(组合数)
Kyoya and Colored Balls time limit per test 2 seconds memory limit per test 256 megabytes input stan ...
- 554C - Kyoya and Colored Balls
554C - Kyoya and Colored Balls 思路:组合数,用乘法逆元求. 代码: #include<bits/stdc++.h> using namespace std; ...
随机推荐
- perl学习之:subs函数
在Perl中,sub关键字主要是为了定义一个子例程,那么subs又是什么呢? 首先subs是一个函数,用于预先声明子例程,函数的参数是预声明的函数名列表.那么这个函数存在的意义是什么?首先,通过该函数 ...
- 20181121笔记(for,数字类型和字符串类型的内置方法)
1.for循环 for循环可以遍历任何序列的项目,如一个列表或者一个字符串. for循环字典时默认取出key: dic={'x':111,'y':222,'z:333'}for k in dic: ...
- android-csv-variants
android-csv-variants https://github.com/zawn/android-csv-variants/ 目的 用于在Android Gradle构建时通过CSV文件配置V ...
- python基础学习笔记——方法返回值
字符串中(需要有变量接收) 判断是不是阿拉伯数字,返回的是布尔值 1 2 3 4 name = 'alexdasx' new_name = name.isdigit() print(new_name) ...
- Oracle跟踪分析数据库启动的各个阶段
目录 启动到nomount状态 设置trace 启动数据库到mount状态并打开 查阅trace 查阅trace的另外方法 v$diag_info 视图 演示如下: 启动到nomount状态 SYS@ ...
- Python第三方库之openpyxl(6)
Python第三方库之openpyxl(6) 折线图 折线图允许在固定轴上绘制数据,它们类似于散列图,主要的区别在于,在折线图中,每个数据序列都是根据相同的值绘制的,不同的轴可以用于辅助轴,与条形图类 ...
- Leetcode 406.根据身高重建队列
根据身高重建队列 假设有打乱顺序的一群人站成一个队列. 每个人由一个整数对(h, k)表示,其中h是这个人的身高,k是排在这个人前面且身高大于或等于h的人数. 编写一个算法来重建这个队列. 注意:总人 ...
- 85. Spring Boot集成RabbitMQ【从零开始学Spring Boot】
这一节我们介绍下Spring Boot整合RabbitMQ,对于RabbitMQ这里不过多的介绍,大家可以参考网络上的资源进行安装配置,本节重点是告诉大家如何在Spring Boot中使用Rabbit ...
- WPF Custom Command And Binding
using System; using System.Collections.Generic; using System.Windows.Input; namespace WPF.Commands { ...
- 【Luogu】P1607庙会班车Fair Shuttle(线段树+贪心)
我不会做贪心题啊……贪心题啊……题啊……啊…… 我真TM菜爆了啊…… 这题就像凌乱的yyy一样,把终点排序,终点相同的按起点排序.然后维护一个查询最大值的线段树.对于一个区间[l,r],如果这个区间已 ...