笔试算法题(38):并查集(Union-Find Sets)
议题:并查集(Union-Find Sets)
分析:
一种树型数据结构,用于处理不相交集合(Disjoint Sets)的合并以及查询;一开始让所有元素独立成树,也就是只有根节点的树;然后根据需要将关联的元素(树)进行合并;合并的方式仅仅是将一棵树最原始的节点的父亲索引指向另一棵树;
优化:加入一个rank数组存储节点深度的下界(从当前节点到其最远子节点的距离),从而可以启发式的对树进行合并,从而减少树的深度,防止树的退化;使 得包含较少节点的树根指向包含较多节点的树根,具体指代为树的高度;另一个优化就是路径压缩,尽可能将子节点都直接连接到根节点之后;
并查集的空间复杂度为O(N),构建一个集合的时间复杂度为O(N);压缩后的查找复杂度是一个很小的常数;应用:Kruskal算法求最小生成树中判断新加入的边是否在同一棵树内部;两个节点的最近公共祖先(Least Common Ancestors);
初始化father:各个节点独立成树,并且其father[i]=i,也就是其父节点就是其自身;
father[i]
0 1 2 3 4 5 6 7 8 9
0 1 2 3 4 5 6 7 8 9初始化rank:各个节点为根节点,所以高度都为1;
rank[i]
0 1 2 3 4 5 6 7 8 9
1 1 1 1 1 1 1 1 1 1合并2和6:由于rank[2]=rank[6],所以将2的父亲索引指向6,这样2和6就在同一棵树;并需将6的rank值增加1;
father[i]
0 1 2 3 4 5 6 7 8 9
0 1 6 3 4 5 6 7 8 9
rank[i]
0 1 2 3 4 5 6 7 8 9
1 1 1 1 1 1 2 1 1 1
样例:
int *father;
int *rank; /**
* 并查集的初始化:
* 数组father中的元素在最开始ide时候都是独立的树,也就是只有根节点
* 的树,数组father的下标i表示节点,而father[i]的值表示i节点的父亲
* 节点;rank[i]=1表示一开始所有树节点的高度都为1
* */
void init(int cap) {
father=new int[cap];
rank=new int[cap];
/**
* 时间复杂度为O(N)
* */
for(int i=;i<;i++) {
father[i]=i;
rank[i]=;
}
} void clean() {
delete [] father;
delete [] rank;
}
/**
* 查找元素所在的集合并进行路劲压缩:
* 由于需要频繁使用GetFather()函数,并且其时间复杂度受树结构影响;
* 当元素较多的时候,集合退化成链表,则GetFather()需要O(N),所以
* 需要对其进行优化,每次调用GetFather()的时候都将输入元素压缩成
* 最原始父亲节点的直接子节点
* */
int GetFather(int son) {
if(father[son]==son)
return son;
else {
father[son]=GetFather(father[son]);
return father[son];
}
} /**
* 合并两个不相交的集合:
* 输入元素x和y来自两个不相交的集合,找到其最原始的父亲节点
* 并将一个原始父亲节点设置为另一个原始父亲节点的父亲节点
* */
void Union1(int x, int y) {
/**
* GetFather()为递归寻找输入节点的最原始的父亲节点
* */
int fx=GetFather(x);
int fy=GetFather(y);
/**
* 判断x和y是否来自同一棵树,如果不是才进行赋值;其实可以
* 不同进行判断(省去if语句)
* 注意最原始父亲节点的father[i]=i;
* */
if(fx!=fy)
father[fx]=fy;
} /**
* 利用rank加权数组启发式进行合并
* */
void Union2(int x, int y) {
int fx=GetFather(x);
int fy=GetFather(y); if(fx==fy) return;
/**
* rank[fx]较大,说明其越靠近根节点,则将
* fy连接到其后面可以压缩路径
* */
if(rank[fx]>rank[fy])
father[fy]=fx;
else {
if(rank[fx]==rank[fy])
rank[fy]++;
father[fx]=fy;
}
} /**
* 判断两个元素是否属于同一个集合:
* 利用GetFather()函数判断其最原始父亲节点是否相同
* */
bool IsSameSet(int x, int y) {
return GetFather(x)==GetFather(y);
}
笔试算法题(38):并查集(Union-Find Sets)的更多相关文章
- 并查集(Union/Find)模板及详解
概念: 并查集是一种非常精巧而实用的数据结构,它主要用于处理一些不相交集合的合并问题.一些常见的用途有求连通子图.求最小生成树的Kruskal 算法和求最近公共祖先等. 操作: 并查集的基本操作有两个 ...
- hdu 4641 K-string SAM的O(n^2)算法 以及 SAM+并查集优化
链接:http://acm.hdu.edu.cn/showproblem.php?pid=4641 题意:有一个长度为n(n < 5e4)的字符串,Q(Q<=2e5)次操作:操作分为:在末 ...
- hdu 1233(还是畅通project)(prime算法,克鲁斯卡尔算法)(并查集,最小生成树)
还是畅通project Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Tota ...
- 前端如何应对笔试算法题?(用node编程)
用nodeJs写算法题 咱们前端使用算法的地方不多,但是为了校招笔试,不得不针对算法题去练习呀! 好不容易下定决心 攻克算法题.发现js并不能像c语言一样自建输入输出流.只能回去学习c语言了吗?其实不 ...
- PAT甲题题解-1107. Social Clusters (30)-PAT甲级真题(并查集)
题意:有n个人,每个人有k个爱好,如果两个人有某个爱好相同,他们就处于同一个集合.问总共有多少个集合,以及每个集合有多少人,并按从大到小输出. 很明显,采用并查集.vis[k]标记爱好k第一次出现的人 ...
- POJ 2421 Constructing Roads (Kruskal算法+压缩路径并查集 )
Constructing Roads Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 19884 Accepted: 83 ...
- 笔试算法题(50):简介 - 广度优先 & 深度优先 & 最小生成树算法
广度优先搜索&深度优先搜索(Breadth First Search & Depth First Search) BFS优缺点: 同一层的所有节点都会加入队列,所以耗用大量空间: 仅能 ...
- [Comet OJ - Contest #6 D][48D 2280]另一道树题_并查集
另一道树题 题目大意: 数据范围: 题解: 这个题第一眼能发现的是,我们的答案分成两种情况. 第一种是在非根节点汇合,第二种是在根节点汇合. 尝试枚举在第几回合结束,假设在第$i$回合结束的方案数为$ ...
- hdu 4641K-string SAM的O(n^2)算法 以及 SAM+并查集优化
转载:http://www.cnblogs.com/hxer/p/5675149.html 题意:有一个长度为n(n < 5e4)的字符串,Q(Q<=2e5)次操作:操作分为:在末尾插入一 ...
随机推荐
- bzoj 303: [CQOI2009]中位数图【前缀和+瞎搞】
处理出一个序列c,a[i]>b,c[i]=1;a[i]==b,c[i]=0;a[i]<b,c[i]=-1,然后s为c的前缀和,设w为b在a序列里的下标 注意到子序列一定横跨w,并且一个符合 ...
- NOI2018D2T1 屠龙勇士
安利一下松松松的OJ: 传送门 Description: 有N条巨龙, 对于每个龙含有\(a_i\)的生命, 你有N + M把砍刀, 其中M把是直接给你的, N把是杀死对应的巨龙才能获得的, 每把 ...
- BitCoin工作原理
1.加密货币 公共账本-信任+加密算法=加密货币 BitCoin是第一个被是实现出来的加密货币. 首先理解比特币是什么,在考虑要不要买入?(人人都想一夜暴富,美哉) 2.发送.接收.创造比特币的时候电 ...
- 如何隐藏electron窗体的菜单栏
electron中默认带有顶部菜单栏,有时候我们的应用不需要. 再main.js文件中设置 const electron = require('electron') const path = requ ...
- Object流
- Spring Cloud是什么?
[学习笔记] 3)Spring Cloud是什么?马克-to-win@马克java社区:i)Spring Cloud是一个微服务框架,Spring Cloud基于微服务基础框架Netflix进行了up ...
- shutil模块 + shelve模块 二合一版
其他的看我前面的博客 import shutil # 将文件内容拷贝到另一个文件with open('old.xml','r') as read_f,open('new.xml', 'w') as w ...
- kubernetesV1.13.1一键部署脚本(k8s自动部署脚本)
部署k8sv1.13.1只需要下面几步就OK了: git clone https://github.com/luckman666/deploy_Kubernetes-v1.13.1.git cd de ...
- git ---理论知识
理论基础: 不要高估自己的智商,不要低估Git的能耐. 1.Git记录的 是什么? 记录每一次版本变动的内容 将每个版本独立保存 方便分支管理. 2.git的三棵树---工作区.暂存区域和Git仓库 ...
- InChatter系统之服务端的Windows服务寄宿方式(三)
为了部署的方便,我们开发Windows服务的服务寄宿程序,这样我们的服务便可以作为系统服务,随着系统的启动和关闭而启动和关闭,而避免了其他的设置,同时在服务的终止时(如系统关闭等)能及时处理服务的关闭 ...