Learning Face Age Progression: A Pyramid Architecture of GANs
前言
作为IP模式识别的CNN初始模型是作为单纯判别式-模式识别存在的,并以此为基本模型扩展到各个方向。基本功能为图像判别模型,此后基于Loc+CNN的检测模型-分离式、end2end、以及MaskCNN模型,而后出现基于CNN的预测模型-AcGans。
CNN作为一个基本判别式模型简化为数学模型依然为一个函数映射f(x)->y; 基于CNN的检测模型数学模型为 L(x)+f(x)->y,其中L(x)依然为判别式,给出loc信息,二维的为(y1,y2)点对; 基于CNN的Mask给出每个Pixel的类别信息,数学模型可以简化为 k(x).f(x)—k(x).y,其中K(x)为一个与点位置线性相关的函数;
到了AcGans, 例如基于年龄的预测,CNN为其组成部分之一,而生成式为主要目的服务,数学模型可以简化为g( f0(f2)*f2(x) )—y,把一个判别式f(x)分离为维持不变性的 f0(x)和用于分离的 f2(x),其中f0(x)满足生成式约束不变性, f2(x)满足特征提取-数据输入不变性约束,以满足使用数据完成训练生成模型所要求,以及处理输入的特征提取模型。
通过训练的模型,数据流为f2(x)*X—>f2(X),通过特征提取函数,生成纹理特征; f0*f2(X)—>f0(f2(X)
...........................................
简介
参考:CVPR2018值得一看的25篇论文....
intro 和 related works 主要讲了现有方案大多将年龄信息优先而 identity 信息次之,换句话说,就是生成不同年龄的同时,identity 信息不能很好保留。

Generator 部分不做介绍,无亮点,本文亮点在 loss 部分和特征提取器的跨级并联结构上。
文中提出了特征提取器用于提出特定特征,原因是作者认为相同年龄段的不同人脸有着相同的的纹理等特定信息,而这个提取器就是提取出这些特征。此外,该分类器是经过 age 分类任务预训练好了的。

文中和今年很多思路一样,考虑到了 low-level 和 high-level 信息,将第 2、4、7 等层信息 concat 起来,作为 d 的输入。
identity 信息的保留和上一个 extractor 类似,在人脸分类数据集上预训练,然后拿来直接当 extractor。
独立训练最优G和D,然后得到G学习到一个年龄变换,D作为一个可靠的分类函子。
Learning Face Age Progression: A Pyramid Architecture of GANs的更多相关文章
- Learning Face Age Progression: A Pyramid Architecture of GANs-1-实现人脸老化
Learning Face Age Progression: A Pyramid Architecture of GANs Abstract 人脸年龄发展有着两个重要的需求,即老化准确性和身份持久性, ...
- The issus in Age Progression/Regression by Conditional Adversarial Autoencoder (CAAE)
The issus in Age Progression/Regression by Conditional Adversarial Autoencoder (CAAE) Today I tried ...
- face recognition[翻译][深度人脸识别:综述]
这里翻译下<Deep face recognition: a survey v4>. 1 引言 由于它的非侵入性和自然特征,人脸识别已经成为身份识别中重要的生物认证技术,也已经应用到许多领 ...
- CVPR2018资源汇总
CVPR 2018大会将于2018年6月18~22日于美国犹他州的盐湖城(Salt Lake City)举办. CVPR2018论文集下载:http://openaccess.thecvf.com/m ...
- [C3] Andrew Ng - Neural Networks and Deep Learning
About this Course If you want to break into cutting-edge AI, this course will help you do so. Deep l ...
- 自监督学习(Self-Supervised Learning)多篇论文解读(下)
自监督学习(Self-Supervised Learning)多篇论文解读(下) 之前的研究思路主要是设计各种各样的pretext任务,比如patch相对位置预测.旋转预测.灰度图片上色.视频帧排序等 ...
- CVPR 2017 Paper list
CVPR2017 paper list Machine Learning 1 Spotlight 1-1A Exclusivity-Consistency Regularized Multi-View ...
- Generative Adversarial Nets[content]
0. Introduction 基于纳什平衡,零和游戏,最大最小策略等角度来作为GAN的引言 1. GAN GAN开山之作 图1.1 GAN的判别器和生成器的结构图及loss 2. Condition ...
- Generative Adversarial Nets[CAAE]
本文来自<Age Progression/Regression by Conditional Adversarial Autoencoder>,时间线为2017年2月. 该文很有意思,是如 ...
随机推荐
- Telnet登入cisco router 1800
Login to Router and change to privileged modec:\>telnet 192.168.6.1Trying 192.168.6.1...Connected ...
- Websphere优化 (四个方面)举例
Websphere优化 一.简单介绍 环境 名称 版本号 server操作系统 Centos 5.6 应用server操作系统 Windows 7 Websphere版本号 WAS 7.0 数据库 O ...
- 2016/1/22 1, 1-100 放集合 特定对象移除 2,List集合和Set集合是否可以重复添加
package shuzu; import java.awt.List; import java.util.*; public class ListIterator { public static v ...
- react-native 项目更名步骤
刚开始开发项目的时候,更没有想好一个项目名称,如何才能更名一个RN APP名称呢,可按照如下方式操作即可. 使用说明 更改package.json { "name": " ...
- POJ 2104 HDU 2665 主席树 解决区间第K大
两道题都是区间第K大询问,数据规模基本相同. 解决这种问题, 可以采用平方划分(块状表)复杂度也可以接受,但是实际表现比主席树差得多. 这里大致讲一下我对主席树的理解. 首先,如果对于某个区间[L,R ...
- Asp.Net 文件下载1——流下载(适用于大文件且防盗链)(转)
使用流防盗链下载大文件 直接上 Asp.net 后置代码好了 using System; using System.Data; using System.Configuration; using Sy ...
- UEditor动态添加图片访问路径前缀
在使用UEditor上传图片时发现上传图片后在编辑器中不能显示上传的图片,在这里是需要在jsp/config.json中设置图片访问路径前缀,即项目的根路径,在config.json只能填写字符串的配 ...
- bzoj 1671: [Usaco2005 Dec]Knights of Ni 骑士【bfs】
bfs预处理出每个点s和t的距离d1和d2(无法到达标为inf),然后在若干灌木丛格子(x,y)里取min(d1[x][y]+d2[x][y]) /* 0:贝茜可以通过的空地 1:由于各种原因而不可通 ...
- [Swift通天遁地]一、超级工具-(19)制作六种别具风格的动作表单
★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★➤微信公众号:山青咏芝(shanqingyongzhi)➤博客园地址:山青咏芝(https://www.cnblogs. ...
- 51NOD 1088 最长回文子串&1089 最长回文子串 V2(Manacher算法)
回文串是指aba.abba.cccbccc.aaaa这种左右对称的字符串. 输入一个字符串Str,输出Str里最长回文子串的长度. Input 输入Str(Str的长度 <= 1000(第二题要 ...