ZOJ 3329 期望DP
题目大意:
给定3个已经规定好k1,k2,k3面的3个色子,如果扔到a,b,c则重新开始从1 计数,否则不断叠加所有面的数字之和,直到超过n,输出丢的次数的数学期望
我们在此令dp[]数组记录从当前数值到结束的数学期望
假如有3个面数都为2的色子
那么dp[i] = 1.0 / 2/2/2 * dp[0] + 1.0/8*dp[i+3] +3.0/8*dp[i+4]+3.0/8*dp[i+5]+1.0/8*dp[i+6] + 1
当然那些下标大于i的dp值均为0
可是我们这样从后往前推会导致无法计算dp[0]的数值,没法推
从新寻找规律,可以看做
dp[i] = a[i] * dp[0] + b[i]; 1式
dp[i] = p0 * dp[0] + ∑(dp[i+k]*p[k]) + 1; 2式
1式代人2式
dp[i] = p0*dp[0] + ∑((a[i+k]*dp[0]+b[i+k]))*p[k])+1
dp[i] =( p0+∑(a[i+k]*p[k])) dp[0] + ∑(b[i+k]*p[k]) +1
所以a[i] =p0+∑(a[i+k]*p[k]) b[i] = ∑(b[i+k]*p[k]) +1
这样我们由后往前推不断得到所有的a[i]和b[i]值
dp[0] = a[0]*dp[0]+b[0]
这样我们得到a[0],b[0]就很容易得到dp[0]的值了
这是这段叠加处求a,b数组的代码
memset(a,0,sizeof(a));
memset(b,0,sizeof(b));
for(int i=n;i>=0;i--){
for(int j=3;j<=maxn;j++)
{
a[i]+=a[i+j] * pro[j];
b[i]+=b[i+j] * pro[j];
}
a[i]+=1.0/k1/k2/k3;
b[i]+=1;
}
#include <cstdio>
#include <cstring> using namespace std;
double pro[],a[],b[]; int main()
{
int n,k1,k2,k3,d,e,f,T;
scanf("%d",&T);
while(T--){
scanf("%d%d%d%d%d%d%d",&n,&k1,&k2,&k3,&d,&e,&f); int maxn = k1+k2+k3;
memset(pro,,sizeof(pro));
for(int i=;i<=k1;i++){
for(int j=;j<=k2;j++){
for(int k=;k<=k3;k++)
if(i!=d||j!=e||k!=f)
pro[i+j+k]++;
}
} for(int i=;i<=maxn;i++)
pro[i] = pro[i]*1.0/k1/k2/k3; memset(a,,sizeof(a));
memset(b,,sizeof(b));
for(int i=n;i>=;i--){
for(int j=;j<=maxn;j++)
{
a[i]+=a[i+j] * pro[j];
b[i]+=b[i+j] * pro[j];
}
a[i]+=1.0/k1/k2/k3;
b[i]+=;
} double ans = b[] / (-a[]);
printf("%.10f\n",ans);
}
}
ZOJ 3329 期望DP的更多相关文章
- zoj 3329 概率dp
题意:有三个骰子,分别有k1,k2,k3个面.每个面值为1--kn每次掷骰子,如果三个面分别为a,b,c则分数置0,否则加上三个骰子的分数之和.当分数大于n时结束.求游戏的期望步数.初始分数为0 链接 ...
- poj 2096 Collecting Bugs && ZOJ 3329 One Person Game && hdu 4035 Maze——期望DP
poj 2096 题目:http://poj.org/problem?id=2096 f[ i ][ j ] 表示收集了 i 个 n 的那个. j 个 s 的那个的期望步数. #include< ...
- poj 2096 , zoj 3329 , hdu 4035 —— 期望DP
题目:http://poj.org/problem?id=2096 题目好长...意思就是每次出现 x 和 y,问期望几次 x 集齐 n 种,y 集齐 s 种: 所以设 f[i][j] 表示已经有几种 ...
- ZOJ 3822 Domination 期望dp
Domination Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://acm.zju.edu.cn/onlinejudge/showProblem ...
- 【BZOJ-1419】Red is good 概率期望DP
1419: Red is good Time Limit: 10 Sec Memory Limit: 64 MBSubmit: 660 Solved: 257[Submit][Status][Di ...
- [NOIP2016]换教室 D1 T3 Floyed+期望DP
[NOIP2016]换教室 D1 T3 Description 对于刚上大学的牛牛来说, 他面临的第一个问题是如何根据实际情况中情合适的课程. 在可以选择的课程中,有2n节课程安排在n个时间段上.在第 ...
- HDU 4336 Card Collector (期望DP+状态压缩 或者 状态压缩+容斥)
题意:有N(1<=N<=20)张卡片,每包中含有这些卡片的概率,每包至多一张卡片,可能没有卡片.求需要买多少包才能拿到所以的N张卡片,求次数的期望. 析:期望DP,是很容易看出来的,然后由 ...
- 【BZOJ-4008】亚瑟王 概率与期望 + DP
4008: [HNOI2015]亚瑟王 Time Limit: 20 Sec Memory Limit: 512 MBSec Special JudgeSubmit: 832 Solved: 5 ...
- 期望dp BZOJ3450+BZOJ4318
BZOJ3450 概率期望DP f[i]表示到i的期望得分,g[i]表示到i的期望长度. 分三种情况转移: ① s[i]=‘x’:f[i]=f[i-1],g[i]=0 ② s[i]=‘o’:f[i]= ...
随机推荐
- java数组实现买彩票(二个一维数组的比较思想)
/** 设计一个程序,模拟从彩球池里随机抽取5个彩球(彩球池里一共有11个彩球,编号为1~11), 要求在控制台打印出这5个被取出来的彩球的编号(注意编号不能重复). 思路: 1.创建一个int类型的 ...
- 424 Longest Repeating Character Replacement 替换后的最长重复字符
给你一个仅由大写英文字母组成的字符串,你可以将任意位置上的字符替换成另外的字符,总共可最多替换 k 次.在执行上述操作后,找到包含重复字母的最长子串的长度.注意:字符串长度 和 k 不会超过 104. ...
- 【转】Java中,&&与&,||与|的区别
转自:http://blog.csdn.net/lishiyuzuji/article/details/8116516 在Java的逻辑运算符中,有这么四类:&&(短路与),& ...
- php微信自动发红包
<?phpheader('Content-type:text');define("TOKEN", "weixin");$wechatObj = new w ...
- 原型模式及php实现
原型模式: 通过复制已经存在的实例来返回新的实例,而不是新建实例,并且原型(被复制的实例)是可定制的:原型模式多用于创建复杂的或耗时的实例,这种情况下,复制一个已经存在的实例是程序运行更高效无疑是一种 ...
- 锐动SDK针对游戏直播提出的解决方案
方案架构 PC端视频直播与录播功能为游戏厂商宣传,玩家个人秀,大型电竞赛事提供完美的技术解决方案. 直播形式灵活多变不,同音源的选择,画面切换,游戏中嵌入摄像头丰,富解说画面.突出主播个人魅力与粉丝形 ...
- R in action读书笔记(16)第十二章 重抽样与自助法之 置换检验
第十二章:重抽样与自助法 本章,我们将探究两种应用广泛的依据随机化思想的统计方法:置换检验和自助法 12.1 置换检验 置换检验,也称随机化检验或重随机化检验. 有两种处理条件的实验,十个受试者已经被 ...
- Python学习 Day 7 面向对象 类和实例 访问限制
面向对象编程 面向对象编程——Object Oriented Programming,简称OOP,是一种程序设计思想.OOP把对象作为程序的基本单元,一个对象包含了数据和操作数据的函数. 面向过程的程 ...
- MAC加域重复跳出---"talagent"想使用“本地项目” 的钥匙串
很简单的解决办法,就是把以前的钥匙串给删掉就好 (重要提示:这个方法,以前所有程序自动记录密码都会丢掉,safari的自动填充,QQ自动登录,imessages 的等等) 1.打开Finder -&g ...
- spring mvc 配置运行报错误
四月 06, 2015 10:51:18 上午 org.apache.catalina.startup.VersionLoggerListener log 信息: Server version: Ap ...