POJ 3264 Balanced Lineup(RMQ_ST)
id=3264
Description
For the daily milking, Farmer John's N cows (1 ≤ N ≤ 50,000) always line up in the same order. One day Farmer John decides to organize a game of Ultimate Frisbee with some of the cows. To keep things simple, he will take a contiguous range
of cows from the milking lineup to play the game. However, for all the cows to have fun they should not differ too much in height.
Farmer John has made a list of Q (1 ≤ Q ≤ 200,000) potential groups of cows and their heights (1 ≤ height ≤ 1,000,000). For each group, he wants your help to determine the difference in height between the shortest and the tallest
cow in the group.
Input
Lines 2..N+1: Line i+1 contains a single integer that is the height of cow i
Lines N+2..N+Q+1: Two integers A and B (1 ≤ A ≤ B ≤ N), representing the range of cows from A to B inclusive.
Output
Sample Input
6 3
1
7
3
4
2
5
1 5
4 6
2 2
Sample Output
6
3
0
Source
PS:
百度百科RMQ:http://baike.baidu.com/view/1536346.htm?fr=aladdin
RMQ:http://blog.csdn.net/zztant/article/details/8535764
代码例如以下:
#include <cstdio>
#include <cstring>
#include <cmath>
#include <iostream>
using namespace std;
const int MAXN = 100117;
int n,query;
int num[MAXN]; int F_Min[MAXN][20],F_Max[MAXN][20]; void Init()
{
for(int i = 1; i <= n; i++)
{
F_Min[i][0] = F_Max[i][0] = num[i];
} for(int i = 1; (1<<i) <= n; i++) //按区间长度递增顺序递推
{
for(int j = 1; j+(1<<i)-1 <= n; j++) //区间起点
{
F_Max[j][i] = max(F_Max[j][i-1],F_Max[j+(1<<(i-1))][i-1]);
F_Min[j][i] = min(F_Min[j][i-1],F_Min[j+(1<<(i-1))][i-1]);
}
}
} int Query_max(int l,int r)
{
int k = (int)(log(double(r-l+1))/log((double)2));
return max(F_Max[l][k], F_Max[r-(1<<k)+1][k]);
} int Query_min(int l,int r)
{
int k = (int)(log(double(r-l+1))/log((double)2));
return min(F_Min[l][k], F_Min[r-(1<<k)+1][k]);
} int main()
{
int a,b;
scanf("%d %d",&n,&query);
for(int i = 1; i <= n; i++)
scanf("%d",&num[i]);
Init();
while(query--)
{
scanf("%d %d",&a,&b);
//printf("区间%d到%d的最大值为:%d\n",a,b,Query_max(a,b));
//printf("区间%d到%d的最小值为:%d\n",a,b,Query_min(a,b));
printf("%d\n",Query_max(a,b)-Query_min(a,b));
}
return 0;
}
POJ 3264 Balanced Lineup(RMQ_ST)的更多相关文章
- POJ 3264 Balanced Lineup(RMQ)
点我看题目 题意 :N头奶牛,Q次询问,然后给你每一头奶牛的身高,每一次询问都给你两个数,x y,代表着从x位置上的奶牛到y位置上的奶牛身高最高的和最矮的相差多少. 思路 : 刚好符合RMQ的那个求区 ...
- poj 3264:Balanced Lineup(线段树,经典题)
Balanced Lineup Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 32820 Accepted: 15447 ...
- POJ - 3264——Balanced Lineup(入门线段树)
Balanced Lineup Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 68466 Accepted: 31752 ...
- POJ 3264 Balanced Lineup(ST模板)
链接:http://poj.org/problem?id=3264 题意:给n个数,求一段区间L,R的最大值 - 最小值,Q次询问 思路:ST表模板,预处理区间最值,O(1)复杂度询问 AC代码: # ...
- poj 3264 Balanced Lineup (线段树)
Balanced Lineup Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 42489 Accepted: 20000 ...
- poj 3264 Balanced Lineup(RMQ裸题)
Balanced Lineup Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 43168 Accepted: 20276 ...
- POJ 题目3264 Balanced Lineup(RMQ)
Balanced Lineup Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 39046 Accepted: 18291 ...
- poj3264 - Balanced Lineup(RMQ_ST)
Balanced Lineup Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 45243 Accepted: 21240 ...
- POJ 3264 Balanced Lineup (线段树)
Balanced Lineup For the daily milking, Farmer John's N cows (1 ≤ N ≤ 50,000) always line up in the s ...
随机推荐
- (转)配置Spring管理的bean的作用域
http://blog.csdn.net/yerenyuan_pku/article/details/52833477 Spring管理的bean的作用域有: singleton 在每个Spring ...
- Java后端学习路线_备战
SpringCloud项目实战 Dubbo项目实战 项目实战应涵括哪些技术: 缓存.消息队列 WEB应用服务器(Weblogic.Jetty.JBoss.WebSphere) NoSQL(MongoD ...
- 部署 k8s Cluster(下)【转】
上节我们通过 kubeadm 在 k8s-master 上部署了 Kubernetes,本节安装 Pod 网络并添加 k8s-node1 和 k8s-node2,完成集群部署. 安装 Pod 网络 要 ...
- windows10用WMware安装Linux虚拟机详细步骤
windows10用WMware安装Linux虚拟机详细步骤 一.安装环境 windows10操作系统物理机VMware Workstation 软件(可以在网上下载)CentOS6.9镜像文件( ...
- PHP100视频教程-->视频下载
链接:https://pan.baidu.com/s/14tbX1rz3hYSKY6k0T6WVzg提取码:kypy PHP是一种目前最流行的服务端Web程序开发语言之一.PHP主要的特点是语法简单易 ...
- 【MyBatis】MyBatis Tomcat JNDI原理及源码分析
一. Tomcat JNDI JNDI(java nameing and drectory interface),是一组在Java应用中访问命名和服务的API,所谓命名服务,即将对象和名称联系起来,使 ...
- 「 Luogu P2801 」 教主的魔法——分块
# 解题思路 修改,就是一个区间修改的常规操作,但是为了迎合查询的需要,对两端的不完整的块需要暴力重构,重新进行排序操作,保证每一块都是单调上升的顺序. 然后再说进行查询的操作,起初,我们需要在每一个 ...
- 常用的网络通信命令--write.wall.mesg.mail
write 作用:给其它的在线用户发送消息 格式:write [ 用户名 ] [ tty ] 注意点:使用之前最好使用 who 命令查看当前在线用户,tty 为端口号 使用举例: 在光标闪烁的地方 ...
- 如何用纯 CSS 创作一个渐变色动画边框
效果预览 在线演示 按下右侧的"点击预览"按钮可以在当前页面预览,点击链接可以全屏预览. https://codepen.io/comehope/pen/odpRKX 可交互视频教 ...
- Python数据分析 Pandas模块 基础数据结构与简介(一)
pandas 入门 简介 pandas 组成 = 数据面板 + 数据分析工具 poandas 把数组分为3类 一维矩阵:Series 把ndarray强大在可以存储任意数据类型可以专门处理时间数据 二 ...