最开始一直想不通,为什么推出这个公式,后来想了半天,终于想明白了。

题目大意是,有M个格子,有K个物品。我们希望在格子与物品之间连数量尽可能少的边,使得——不论是选出M个格子中的哪K个,都可以与K个物品恰好一一匹配。

然后你可以试着画图,每次必须有k个格子是单独的(与各物体只有一条线相连)所以还剩下m-k个格子,可以用来补位,也就是跟每个物品都相连,所以就有(m-k)*k

上代码(巨巨巨巨巨简单):

 #include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std; int main(){
long long m, k;
while (~scanf("%lld %lld", &m, &k)){
printf("%lld\n", k + (m - k)*k);
}
//system("pause");
return ;
}

hdu6195 cable cable cable(from 2017 ACM/ICPC Asia Regional Shenyang Online)的更多相关文章

  1. 2017 ACM/ICPC Asia Regional Shenyang Online spfa+最长路

    transaction transaction transaction Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 132768/1 ...

  2. 2017 ACM/ICPC Asia Regional Shenyang Online cable cable cable

    Problem Description Connecting the display screen and signal sources which produce different color s ...

  3. 2017 ACM/ICPC Asia Regional Shenyang Online(部分题解)

    HDU 6197 array array array 题意 输入n和k,表示输入n个整数和可以擦除的次数k,如果至多擦除k次能是的数组中的序列是不上升或者是不下降序列,就是魔力数组,否则不是. 解题思 ...

  4. 2017 ACM/ICPC Asia Regional Shenyang Online

    cable cable cable Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others ...

  5. HDU 6205(尺取法)2017 ACM/ICPC Asia Regional Shenyang Online

    题目链接 emmmm...思路是群里群巨聊天讲这题是用尺取法.....emmm然后就没难度了,不过时间上3000多,有点.....盗了个低配本的读入挂发现就降到2800左右, 翻了下,发现神犇Clar ...

  6. HDU 6198(2017 ACM/ICPC Asia Regional Shenyang Online)

    思路:找规律发现这个数是斐波那契第2*k+3项-1,数据较大矩阵快速幂搞定.   快速幂入门第一题QAQ #include <stdio.h> #include <stdlib.h& ...

  7. 2017 ACM/ICPC Asia Regional Shenyang Online array array array

    2017-09-15 21:05:41 writer:pprp 给出一个序列问能否去掉k的数之后使得整个序列不是递增也不是递减的 先求出LIS,然后倒序求出最长递减子序列长度,然后判断去k的数后长度是 ...

  8. 2017 ACM/ICPC Asia Regional Shenyang Online card card card

    题意:看后面也应该知道是什么意思了 解法: 我们设置l,r,符合条件就是l=起始点,r=当前点,不符合l=i+1 学习了一下FASTIO #include <iostream> #incl ...

  9. 2017 ACM/ICPC Asia Regional Shenyang Online transaction transaction transaction

    Problem Description Kelukin is a businessman. Every day, he travels around cities to do some busines ...

随机推荐

  1. Intel processor brand names-Xeon,Core,Pentium,Celeron----Atom

    http://en.wikipedia.org/wiki/Intel_atom Intel Atom From Wikipedia, the free encyclopedia   (Redirect ...

  2. ribbon负载均衡进行服务消费

    相同服务以不同端口形式注册到eureka上,ribbon从eureka上获取冰进行服务消费,会偶现如下现象: I/O error on GET request for "http://COM ...

  3. Appium&python

    Appium官网所描述的特性,都很吸引人,刚好最近在研究Mobile Automation Testing,所以很有兴趣探索下Appium这个年轻的工具. 不过看了官网的documents,实在是让初 ...

  4. iOS中UIPickerView常见属性和方法的总结

    UIPickerView是iOS中的原生选择器控件,使用方便,用法简单,效果漂亮. @property(nonatomic,assign) id<UIPickerViewDataSource&g ...

  5. react源码分析

    ReactMount.render -> ReactMount._renderSubtreeIntoContainer -> ReactMount._renderNewRootCompon ...

  6. css的书写规范,有哪些注意点

    一.框架为先,细节次之. 先写一些浮动,然后高与宽,然后再是细节方面的书写. 比如写一个浮动容器的样式,我们应该先让这个容器的框架被渲染出来,让大家看到基本的 网站框架.然后再再去渲染容器里面的内容. ...

  7. I2C测试【转】

    本文转载自: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 ...

  8. BootLoader与Linux内核的参数传递【转】

    本文转载自:http://blog.sina.com.cn/s/blog_476d8cf30100rttx.html 在嵌入式系统中,BootLoader 是用来初始化硬件,加载内核,传递参数.因为嵌 ...

  9. POJ - 2417 Discrete Logging(Baby-Step Giant-Step)

    d. 式子B^L=N(mod P),给出B.N.P,求最小的L. s.下面解法是设的im-j,而不是im+j. 设im+j的话,貌似要求逆元什么鬼 c. /* POJ 2417,3243 baby s ...

  10. hash与map的区别联系应用(转)

    一,hashtable原理: 哈希表又名散列表,其主要目的是用于解决数据的快速定位问题.考虑如下一个场景. 一列键值对数据,存储在一个table中,如何通过数据的关键字快速查找相应值呢?不要告诉我一个 ...