原根判定:$m>2$,$\varphi (m)$的不同素数是$q_1,q_2,……,q_s$,$(g,m)=1$,则$g$是$m$的一个原根的充要条件是$g^{\frac{\varphi(m)}{q_i}} \not\equiv 1 (mod m)$。

原根一般很小可以暴力得。

 //#include<iostream>
#include<cstring>
#include<cstdlib>
#include<cstdio>
//#include<math.h>
//#include<time.h>
//#include<complex>
#include<algorithm>
using namespace std; int p;
int s[],len=; int powmod(int a,int b)
{
int ans=;
while (b)
{
if (b&) ans=1ll*ans*a%p;
a=1ll*a*a%p;
b>>=;
}
return ans;
} int main()
{
scanf("%d",&p);
int tmp=p-;
for (int i=;1ll*i*i<=tmp;i++) if (tmp%i==)
{
s[++len]=i;
while (tmp%i==) tmp/=i;
}
if (tmp>) s[++len]=tmp;
for (int i=;i<=p-;i++)
{
bool flag=;
for (int j=;j<=len;j++) if (powmod(i,(p-)/s[j])==) {flag=; break;}
if (flag) {printf("%d\n",i); break;}
}
return ;
}

51nod1135 原根的更多相关文章

  1. 51nod--1135 原根 (数论)

    题目: 设m是正整数,a是整数,若a模m的阶等于φ(m),则称a为模m的一个原根.(其中φ(m)表示m的欧拉函数) 给出1个质数P,找出P最小的原根. Input 输入1个质数P(3 <= P ...

  2. 51nod1135(求最小原根)

    题目链接:https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1135 题意:中文题诶- 思路:设m是正整数,a是整数,若a模 ...

  3. [POJ1284]Primitive Roots(原根性质的应用)

    题目:http://poj.org/problem?id=1284 题意:就是求一个奇素数有多少个原根 分析: 使得方程a^x=1(mod m)成立的最小正整数x是φ(m),则称a是m的一个原根 然后 ...

  4. 51nod 1135 原根

    题目链接:51nod 1135 原根 设 m 是正整数,a是整数,若a模m的阶等于φ(m),则称 a 为 模m的一个原根.(其中φ(m)表示m的欧拉函数) 阶:gcd(a,m)=1,使得成立的最小的 ...

  5. hdu4992 Primitive Roots(所有原根)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4992 题意:给出n,输出n的所有原根. 思路:求出n的一个原根x,那么对于所以的i,i<phi( ...

  6. HDU5478 原根求解

    看别人做的很简单我也不知道是怎么写出来的 自己拿到这道题的想法就是模为素数,那必然有原根r ,将a看做r^a , b看做r^b那么只要求出幂a,b就能得到所求值a,b 自己慢慢化简就会发现可以抵消n然 ...

  7. HDU3930 (原根)

    给定方程 X^A = B (mol C)  ,求 在[0,C) 中所有的解 , 并且C为质数. 设 rt 为 C 的原根 , 则 X = rt^x  (这里相当于求 A^x =B (mol C) 用大 ...

  8. 【poj1284-Primitive Roots】欧拉函数-奇素数的原根个数

    http://poj.org/problem?id=1284 题意:给定一个奇素数p,求p的原根个数. 原根: { (xi mod p) | 1 <= i <= p-1 } is equa ...

  9. 【BZOJ 1319】 Sgu261Discrete Rootsv (原根+BSGS+EXGCD)

    1319: Sgu261Discrete Roots Time Limit: 1 Sec  Memory Limit: 64 MBSubmit: 389  Solved: 172 Descriptio ...

随机推荐

  1. iPhone4 offical AD

    iPhone4 is so much more than just a new products.I mean this would have a lot of impact on the way i ...

  2. ssl证书过期问题解决

    1,ssl证书失效现象 小程序debug有如下证书无效信息: 浏览器访问https://ic-park.net:30001/indoornav/callFunction1.php 提示证书风险. 2, ...

  3. 在CentOS上把Git从1.7.1升级到1.7.12.4

    在CentOS上把Git从1.7.1升级到1.7.12.4 摘要:本文记录了在CentOS 6.3上,把Git从1.7.1升级到1.7.12.4的过程. 1. 概述 在我做的一个项目中,最近我对生产服 ...

  4. Android(java)学习笔记182:多媒体之撕衣服的案例

    1.撕衣服的案例逻辑:       是两者图片重叠在一起,上面我们看到的是美女穿衣服的图片,下面重叠(看不到的)是美女没有穿衣服的图片.当我们用手滑动画面,上面美女穿衣服的图片就会变成透明,这样的话下 ...

  5. js Math 对象

    Math 对象方法 方法 描述 abs(x) 返回数的绝对值. acos(x) 返回数的反余弦值. asin(x) 返回数的反正弦值. atan(x) 以介于 -PI/2 与 PI/2 弧度之间的数值 ...

  6. C++函数形参为指针和指针引用的区别

    区别: 1.指针传参被调用函数的指针变量在栈内存中重新申请内存. 2.指针引用传参被调用函数的指针变量与调用函数的指针变量共用一块空间. // PointerCite.cpp : 定义控制台应用程序的 ...

  7. Perl语言入门: 斜线不是元字符,所以在不作为分隔符时不需要加上反斜线。

    Perl语言入门: 斜线不是元字符,所以在不作为分隔符时不需要加上反斜线.

  8. C++中static,extern和extern "C"关键字

    1. extern 变量 extern 表明该变量在别的地方已经定义过了,在这里要使用那个变量. 当extern不与"C"在一起修饰变量或函数时,如在头文件中: extern in ...

  9. android问题

    http://www.cnblogs.com/tianjian/category/330793.html

  10. Java开发者写SQL时常犯的10个错误

        首页 所有文章 资讯 Web 架构 基础技术 书籍 教程 我要投稿 更多频道 » - 导航条 - 首页 所有文章 资讯 Web 架构 基础技术 书籍 教程 我要投稿 更多频道 » - iOS ...