[UOJ#128][BZOJ4196][Noi2015]软件包管理器

试题描述

Linux用户和OSX用户一定对软件包管理器不会陌生。通过软件包管理器,你可以通过一行命令安装某一个软件包,然后软件包管理器会帮助你从软件源下载软件包,同时自动解决所有的依赖(即下载安装这个软件包的安装所依赖的其它软件包),完成所有的配置。Debian/Ubuntu使用的apt-get,Fedora/CentOS使用的yum,以及OSX下可用的homebrew都是优秀的软件包管理器。

你决定设计你自己的软件包管理器。不可避免地,你要解决软件包之间的依赖问题。如果软件包A依赖软件包B,那么安装软件包A以前,必须先安装软件包B。同时,如果想要卸载软件包B,则必须卸载软件包A。现在你已经获得了所有的软件包之间的依赖关系。而且,由于你之前的工作,除0号软件包以外,在你的管理器当中的软件包都会依赖一个且仅一个软件包,而0号软件包不依赖任何一个软件包。依赖关系不存在环(若有m(m≥2)个软件包A1,A2,A3,…,Am,其中A1依赖A2,A2依赖A3,A3依赖A4,……,Am−1依赖Am,而Am依赖A1,则称这m个软件包的依赖关系构成环),当然也不会有一个软件包依赖自己。
现在你要为你的软件包管理器写一个依赖解决程序。根据反馈,用户希望在安装和卸载某个软件包时,快速地知道这个操作实际上会改变多少个软件包的安装状态(即安装操作会安装多少个未安装的软件包,或卸载操作会卸载多少个已安装的软件包),你的任务就是实现这个部分。注意,安装一个已安装的软件包,或卸载一个未安装的软件包,都不会改变任何软件包的安装状态,即在此情况下,改变安装状态的软件包数为0。

输入

输入文件的第1行包含1个正整数n,表示软件包的总数。软件包从0开始编号。

随后一行包含n−1个整数,相邻整数之间用单个空格隔开,分别表示1,2,3,…,n−2,n−1号软件包依赖的软件包的编号。
接下来一行包含1个正整数q,表示询问的总数。
之后q行,每行1个询问。询问分为两种:
installx:表示安装软件包x
uninstallx:表示卸载软件包x
你需要维护每个软件包的安装状态,一开始所有的软件包都处于未安装状态。对于每个操作,你需要输出这步操作会改变多少个软件包的安装状态,随后应用这个操作(即改变你维护的安装状态)。

输出

输出文件包括q行。

输出文件的第i行输出1个整数,为第i步操作中改变安装状态的软件包数。

输入示例


install
install
uninstall
install
uninstall

输出示例


数据规模及约定

n=100000

q=100000

题解

树链剖分 + 线段树裸题。

#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cctype>
#include <algorithm>
using namespace std; const int BufferSize = 1 << 16;
char buffer[BufferSize], *Head, *Tail;
inline char Getchar() {
if(Head == Tail) {
int l = fread(buffer, 1, BufferSize, stdin);
Tail = (Head = buffer) + l;
}
return *Head++;
}
int read() {
int x = 0, f = 1; char c = Getchar();
while(!isdigit(c)){ if(c == '-') f = -1; c = Getchar(); }
while(isdigit(c)){ x = x * 10 + c - '0'; c = Getchar(); }
return x * f;
} #define maxn 100010
#define maxm 200010 int n, m, head[maxn], nxt[maxm], to[maxm];
void AddEdge(int a, int b) {
to[++m] = b; nxt[m] = head[a]; head[a] = m;
return ;
} int fa[maxn], son[maxn], dep[maxn], siz[maxn], top[maxn], seg_pos[maxn], dl[maxn], dr[maxn], clo;
void build(int u) {
siz[u] = 1;
for(int e = head[u]; e; e = nxt[e]) {
dep[to[e]] = dep[u] + 1;
build(to[e]);
siz[u] += siz[to[e]];
if(!son[u] || siz[son[u]] < siz[to[e]]) son[u] = to[e];
}
return ;
}
void gett(int u, int tp) {
top[u] = tp; dl[u] = ++clo;
if(son[u]) gett(son[u], tp);
for(int e = head[u]; e; e = nxt[e]) if(to[e] != son[u]) gett(to[e], to[e]);
dr[u] = clo;
return ;
} int sumv[maxn<<2], setv[maxn<<2];
void pushdown(int o, int l, int r) {
if(l == r || setv[o] == -1){ setv[o] = -1; return ; }
int mid = l + r >> 1, lc = o << 1, rc = lc | 1;
setv[lc] = setv[rc] = setv[o];
sumv[lc] = setv[o] * (mid - l + 1);
sumv[rc] = setv[o] * (r - mid);
setv[o] = -1;
return ;
}
int update(int o, int l, int r, int ql, int qr, int v) {
pushdown(o, l, r);
if(ql <= l && r <= qr) {
int tmp = sumv[o];
setv[o] = v;
sumv[o] = v * (r - l + 1);
return tmp;
}
int mid = l + r >> 1, lc = o << 1, rc = lc | 1, ans = 0;
if(ql <= mid) ans += update(lc, l, mid, ql, qr, v);
if(qr > mid) ans += update(rc, mid + 1, r, ql, qr, v);
sumv[o] = sumv[lc] + sumv[rc];
return ans;
}
int modifyup(int u) {
int res = 0, depu = dep[u];
while(u) {
res += update(1, 1, n, dl[top[u]], dl[u], 1);
u = fa[top[u]];
}
return depu - res;
}
int modifydn(int u) {
return update(1, 1, n, dl[u], dr[u], 0);
} int main() {
n = read();
for(int i = 2; i <= n; i++) AddEdge(fa[i] = read() + 1, i); dep[1] = 1; build(1); gett(1, 1);
memset(setv, -1, sizeof(setv));
int q = read(); char ch;
while(q--) {
ch = Getchar();
while(!isalpha(ch)) ch = Getchar();
int u = read() + 1;
if(ch == 'i') printf("%d\n", modifyup(u));
if(ch == 'u') printf("%d\n", modifydn(u));
} return 0;
}

[UOJ#128][BZOJ4196][Noi2015]软件包管理器的更多相关文章

  1. [BZOJ4196][NOI2015]软件包管理器(树链剖分)

    4196: [Noi2015]软件包管理器 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 2166  Solved: 1253[Submit][Sta ...

  2. [BZOJ4196][NOI2015]软件包管理器

    4196: [Noi2015]软件包管理器 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 1040  Solved: 603[Submit][Stat ...

  3. [bzoj4196][Noi2015]软件包管理器_树链剖分_线段树

    软件包管理器 bzoj-4196 Noi-2015 题目大意:Linux用户和OSX用户一定对软件包管理器不会陌生.通过软件包管理器,你可以通过一行命令安装某一个软件包,然后软件包管理器会帮助你从软件 ...

  4. BZOJ4196[Noi2015]软件包管理器——树链剖分+线段树

    题目描述 Linux用户和OSX用户一定对软件包管理器不会陌生.通过软件包管理器,你可以通过一行命令安装某一个软件包,然后软件包管理器会帮助你从软件源下载软件包,同时自动解决所有的依赖(即下载安装这个 ...

  5. BZOJ4196 [Noi2015]软件包管理器 【树剖】

    题目 Linux用户和OSX用户一定对软件包管理器不会陌生.通过软件包管理器,你可以通过一行命令安装某一个软件包,然后软件包管理器会帮助你从软件源下载软件包,同时自动解决所有的依赖(即下载安装这个软件 ...

  6. BZOJ4196: [Noi2015]软件包管理器(树链剖分)

    Description Linux用户和OSX用户一定对软件包管理器不会陌生.通过软件包管理器,你可以通过一行命令安装某一个软件包,然后软件包管理器会帮助你从软件源下载软件包,同时自动解决所有的依赖( ...

  7. [Bzoj4196] [NOI2015] 软件包管理器 [树链剖分,线段树]

    题解摘要:树链剖分后用线段树区间查询修改,对于安装软件,将改点到根的路径全部变为1,对于卸载软件,将子树清空.注意边界,编号是从0开始的,容易漏掉树根. 第一次写树剖- #include <io ...

  8. bzoj4196 [Noi2015]软件包管理器 树链剖分+线段树

    先把树剖分了(又是dfs1.dfs2),然后区间求和.区间覆盖即可 难得的1A好(shui)题 ——写了那么多题,终于有一道是1A的了,加上上一次连续交了几遍A的程序,我的状态莫名好看啊233 总结: ...

  9. BZOJ4196——noi2015软件包管理器

    1.题目大意:讲道理,就是让你有两个修改一个是把一个点到根的路径上的点权值全部变成1,另一个是把一个子树全部变成0 然后让你输出每次修改,改变的哪些节点的值 2.分析:就是一个树剖,树剖是满足dfs序 ...

随机推荐

  1. Yii2.0数据格式器

    平时我们在写代码中,总是要写一个单独的文件来全局处理常用的数据格式.Yii2.0却很人性化,为我们内置了一套数据格式器. 1.格式化日期和时间 Yii::$app->formatter-> ...

  2. LeetCode Isomorphic Strings 对称字符串

    题意:如果两个字符串是对称的,就返回true.对称就是将串1中的同一字符都一起换掉,可以换成同串2一样的. 思路:ASCII码表哈希就行了.需要扫3次字符串,共3*n的计算量.复杂度O(n).从串左开 ...

  3. 洛谷 P1334 瑞瑞的木板==P2664 【题目待添加】

    题目描述 瑞瑞想要亲自修复在他的一个小牧场周围的围栏.他测量栅栏并发现他需要N(1≤N≤20,000)根木板,每根的长度为整数Li(1≤Li≤50,000).于是,他神奇地买了一根足够长的木板,长度为 ...

  4. HTML5与PHP的比较

    一:需求量比较 知名招聘网站拉勾网显示,北京地区HTML5的需求量只有73个,而PHP的需求量有500+个:智联招聘网显示,北京上海广州深圳HTML5的需求量是7475个,而PHP的需求量是12514 ...

  5. Windows10+anaconda,python3.5, 安装glove-python

    Windows10+anaconda,python3.5, 安装glove-python安装glove安装之前 Visual C++ 2015 Build Tools开始安装安装glove最近因为一个 ...

  6. shell脚本,awk合并一列的问题。

    文件 file2内容如下:0 qwert1 asdfghjk2 asdjkl2 zxcvbn3 dfghjkll4 222224 tyuiop4 bnm 让第一列相等的合并成一行,不要第一列,也就是变 ...

  7. 如何查看 JAR 包的源代码

    ava 项目的编译文件经常被打包成 JAR(Java Archive,Java 归档文件)文件,当然,作为学习,有时候也非常想看到这个 JAR 被打包前的源代码是怎么样的. 下面提供几种查看 JAR ...

  8. Java--对象和引用 转载

    这个讲的很详细,看了以后终于懂了.特转载供以后学习使用. 原文链接:http://www.cnblogs.com/dolphin0520/p/3592498.html

  9. linux系统产生随机数的6种方法

    linux系统产生随机数的6种方法 方法一:通过系统环境变量($RANDOM)实现: [root@test ~]# echo $RANDOM 11595 [root@test ~]# echo $RA ...

  10. 七周成为数据分析师04_Excel

    Excel适用于敏捷.快速.需要立即响应的需求: 而 Python.BI 等适用于常规.频繁.可复用可工程化的需求 设计到 Excel 的内容主要需要进行实操练习,这里只做一个陈列,具体知识请参考: ...