收入囊中

http://blog.csdn.net/abcd1992719g/article/details/25505315这里,我们已经学习了怎样利用反向投影和meanshift算法来在图像中查找给定模版图片的位置。meanshift针对的是单张图像,在连续图像序列的跟踪中。camshift(Continuously
Adaptive Mean-SHIFT)是一种著名的算法。但在这里。我们先不讨论camshift,而是先讨论最简单的模版匹配。

  • 模版匹配算法
  • opencv normalize函数
  • opencv matchTemplate函数
  • opencv minMaxLoc函数
当中,normalize归一化函数和minMaxLoc函数我们曾经用过,在本节将具体阐述他们的使用方法。


葵花宝典
本节的算法也是属于比較简单的。
我们举个样例:以下各自是源图像和模版图像

watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvYWJjZDE5OTI3MTln/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/Center" alt="">


站在最单纯的角度,你会怎么做?
毫无疑问,我们要找到一个标准来衡量。square error是最普遍简单的.
步骤:
  1. 遍历图像的全部点
  2. 对于一个点(m,n),计算square error.也就是遍历模版图像的长和高,计算sum( (src(m+x,n+y)-template(x,y))^2 )
  3. 遍历完后,就有了一个和原图大小相等的square error(不考虑边缘)矩阵,然后取出值最小的那个位置
OpenCV就是这么做的。仅仅只是它提供了6种方法(事实上是3种,另外3种仅仅只是多了归一化),square error是当中一种


初识API
循环遍历计算的过程OpenCV帮我们做了,matchTemplate
C++: void matchTemplate(InputArray image,
InputArray templ, OutputArray result, int method)
 
  • image – 输入图像
  • templ – 模版图像,不能比输入图像大,类型要和输入图像一致
  • result – 输出的结果,单通道32位浮点数.result图像比输入图像要小,由于考虑了边界.If image is  and templ is  ,
    thenresult is  .
  • method – 有6种方法

method=CV_TM_SQDIFF

  • method=CV_TM_SQDIFF_NORMED

  • method=CV_TM_CCORR

  • method=CV_TM_CCORR_NORMED

  • method=CV_TM_CCOEFF

    where

  • method=CV_TM_CCOEFF_NORMED

NOTE:之前我们用square error时,值越小说明越匹配,可是并非上面全部的方法都是这样子.

R越小越匹配 (when CV_TM_SQDIFF was
used) 
R越大越匹配 (whenCV_TM_CCORR or CV_TM_CCOEFF was
used) 



归一化?normalize
我们发现,上面3种是没有归一化的,也就是result可能会是一个值非常大的矩阵,几万几十万,imshow是一片黑乎乎。

假设我们想看效果。就必需要做归一化了.


C++: void normalize(InputArray src,
OutputArray dst, double alpha=1,
double beta=0, int norm_type=NORM_L2,
int dtype=-1, InputArraymask=noArray() )


如果我有[1,4,5,6,7,10]的矩阵,我们先看3种归一化类型
L1_norm: 每個元素乘上1/sqrt(1+4+5+6+7+10)

L2_norm: 每個元素乘上1/sqrt(1+16+25+36+49+100)

NORM_MINMAX:使每個元素限制在[a=5,b=0]之間算法例如以下:dst(i)=(src(i)-min(src))*(5-0)/(max(src)-min(src))

1-->0

4-->3*5/9=1.6666

5-->4*5/9=2.2222
比較经常使用的还是MinMAX,OpenCV默认使用NORM_L2
在使用L1_norm,L2_norm时,alpha,beta就没效果了.
在使用NORM_MINMAX时候。alpha,beta就是你要缩放的范围,我发现两个值换一下没关系,大概OpenCV帮我们推断了大小。


找到最大最小值。minMaxLoc


double minVal; double maxVal; Point minLoc; Point maxLoc;

minMaxLoc( image, &minVal, &maxVal, &minLoc, &maxLoc, Mat() );

the function calls as arguments:

  • image: 输入图像
  • &minVal and &maxVal: Variables to save the minimum and maximum values in result
  • &minLoc and &maxLoc: The Point locations of the minimum and maximum values in the array.
  • Mat(): Optional mask



荷枪实弹
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include <iostream>
#include <stdio.h> using namespace std;
using namespace cv; Mat img; Mat templ; Mat result;
const char* image_window = "Source Image";
const char* result_window = "Result window"; int match_method;
int max_Trackbar = 5; void MatchingMethod( int, void* ); int main( int, char** argv )
{
/// Load image and template
img = imread( argv[1], 1 );
templ = imread( argv[2], 1 ); /// Create windows
namedWindow( image_window, CV_WINDOW_AUTOSIZE );
namedWindow( result_window, CV_WINDOW_AUTOSIZE ); /// Create Trackbar
const char* trackbar_label = "Method: \n 0: SQDIFF \n 1: SQDIFF NORMED \n 2: TM CCORR \n 3: TM CCORR NORMED \n 4: TM COEFF \n 5: TM COEFF NORMED";
createTrackbar( trackbar_label, image_window, &match_method, max_Trackbar, MatchingMethod ); MatchingMethod( 0, 0 ); waitKey(0);
return 0;
} void MatchingMethod( int, void* )
{
Mat img_display;
img.copyTo( img_display ); //重要。调用模版匹配再进行归一化
matchTemplate( img, templ, result, match_method );
normalize( result, result, 0, 1, NORM_MINMAX); double minVal; double maxVal; Point minLoc; Point maxLoc;
Point matchLoc;
//找到最大最小点
minMaxLoc( result, &minVal, &maxVal, &minLoc, &maxLoc, Mat() ); //依据我前面讲的。分方法取最大还是最小值
if( match_method == CV_TM_SQDIFF || match_method == CV_TM_SQDIFF_NORMED )
{ matchLoc = minLoc; }
else
{ matchLoc = maxLoc; } //画上矩形框框
rectangle( img_display, matchLoc, Point( matchLoc.x + templ.cols , matchLoc.y + templ.rows ), Scalar::all(0), 2, 8, 0 );
rectangle( result, matchLoc, Point( matchLoc.x + templ.cols , matchLoc.y + templ.rows ), Scalar::all(0), 2, 8, 0 ); imshow( image_window, img_display );
imshow( result_window, result ); return;
}


举一反三
有时候。图像中要有多个匹配的地方,这时候就不能仅仅用一次minMaxLoc来攻克了,能够去遍历我们的结果矩阵.





计算机视觉讨论群:162501053
转载请注明:http://blog.csdn.net/abcd1992719g

OpenCV2马拉松第13圈——模版匹配的更多相关文章

  1. OpenCV2马拉松第15圈——边缘检測(Laplace算子,LOG算子)

    收入囊中 拉普拉斯算子 LOG算子(高斯拉普拉斯算子) OpenCV Laplacian函数 构建自己的拉普拉斯算子 利用拉普拉斯算子进行图像的锐化 葵花宝典 在OpenCV2马拉松第14圈--边缘检 ...

  2. OpenCV2马拉松第17圈——边缘检測(Canny边缘检測)

    计算机视觉讨论群162501053 转载请注明:http://blog.csdn.net/abcd1992719g 收入囊中 利用OpenCV Canny函数进行边缘检測 掌握Canny算法基本理论 ...

  3. OpenCV2马拉松第10圈——直方图反向投影(back project)

    收入囊中 灰度图像的反向投影 彩色图像的反向投影 利用反向投影做object detect 葵花宝典 什么是反向投影?事实上没有那么高大上! 在上一篇博文学到,图像能够获得自己的灰度直方图. 反向投影 ...

  4. OpenCV2马拉松第22圈——Hough变换直线检測原理与实现

    计算机视觉讨论群162501053 转载请注明:http://blog.csdn.net/abcd1992719g/article/details/27220445 收入囊中 Hough变换 概率Ho ...

  5. OpenCV2马拉松第14圈——边缘检測(Sobel,prewitt,roberts)

    收入囊中 差分在边缘检測的角色 Sobel算子 OpenCV sobel函数 OpenCV Scharr函数 prewitt算子 Roberts算子 葵花宝典 差分在边缘检測究竟有什么用呢?先看以下的 ...

  6. OpenCV2马拉松第2圈——读写图片

    收入囊中 用imread读取图片 用nameWindow和imshow展示图片 cvtColor彩色图像灰度化 imwrite写图像 Luv色彩空间转换 初识API 图像读取接口 image = im ...

  7. OpenCV2马拉松第12圈——直方图比較

    收入囊中 使用4种不同的方法进行直方图比較 葵花宝典 要比較两个直方图, 首先必需要选择一个衡量直方图相似度的对照标准.也就是先说明要在哪个方面做对照. 我们能够想出非常多办法,OpenCV採用了下面 ...

  8. openCV2马拉松第19圈——Harris角点检測(自己实现)

    计算机视觉讨论群162501053 转载请注明:http://blog.csdn.net/abcd1992719g/article/details/26824529 收入囊中 使用OpenCV的con ...

  9. OpenCV2马拉松第5圈——线性滤波

    收入囊中 这里的非常多内容事实上在我的Computer Vision: Algorithms and ApplicationsのImage processing中都有讲过 相关和卷积工作原理 边界处理 ...

随机推荐

  1. InnoDB INFORMATION_SCHEMA Tables about Compression

    InnoDB INFORMATION_SCHEMA Tables about Compression 了解关于压缩的InnoDB INFORMATION_SCHEMA表,可以深入了解压缩的整体运行情况 ...

  2. linux秘钥分发

    秘钥分发 ssh-copy-id -i /root/.ssh/id_rsa.pub "-p 9000 root@192.168.1.100" 传送文件 scp -P9000 -rp ...

  3. Ubuntu配置TFTP服务器

    TFTP(Trivial File Transfer Protocol,简单文件传输协议)是TCP/IP协议族中的一个用来在客户机与服务器之间进行简单文件传输的协议,提供不复杂.开销不大的文件传输服务 ...

  4. 第九节:pandas打印设置

    get_option() :获取系统默认设置选项: set_option() :设置系统设置选项.

  5. 【HDU 3336】Count the string(KMP+DP)

    Problem Description It is well known that AekdyCoin is good at string problems as well as number the ...

  6. 跟初学者学习IbatisNet第二篇

    在上一篇里面我们知道了什么是IbatisNet,并且知道了如何用IbatisNet进行简单的增删改查的操作,在这一篇文章里面我们主要介绍一下IbatisNet操作存储过程. 我们一般把存储过程分为两种 ...

  7. PHP加速之eaccelerator

    eaccelerator简介: eAccelerator是一个自由开放源码php加速器,优化和动态内容缓存,提高了php脚本的缓存性能,使得PHP脚本在编译的状态下,对服务器的开销几乎完全消除. 它还 ...

  8. 66. No EntityManager with actual transaction available for current thread【从零开始学】

    [从零开始学习Spirng Boot-常见异常汇总] 具体异常信息: org.springframework.dao.InvalidDataAccessApiUsageException: No En ...

  9. Flask处理前端POST过来的JSON数据

    POST JSON数据的JS代码: $.ajax({ url:'http://127.0.0.1:5000/calc', type : 'post', dataType:'json', headers ...

  10. Python基础教程笔记——第1章

    1.8 函数 pow(x,y) x^y abs(x)          取数的绝对值 round(x)   会把浮点数四舍五入为最接近的整数 floor(x)     向下取整的函数,但是需要先imp ...