RDD的两种操作

  1.Tansformation(转化操作):返回值还是一个RDD

  2.Action(行动操作):返回值不是一个RDD

     第一种Transformation是返回一个新的RDD,如map(),filter()等。这种操作是lazy(惰性)的,即从一个RDD转换生成另一个RDD的操作不是马上执行,只是记录下来,只有等到有Action操作是才会真正启动计算,将生成的新RDD写到内存或hdfs里,不会对原有的RDD的值进行改变。而Action操作才会实际触发Spark计算,对RDD计算出一个结果,并把结果返回到内存或hdfs中,如count(),first()等。
     通俗点理解的话,就是假设你写了一堆程序,里面对数据进行了多次转换,这个时候实际上没有计算,就只是放着这里。在最后出结果的时候会用到Action操作,这个时候Action会执行与之相关的转换操作,运算速度会非常快(一是Action不一定需要调用所有的transformation操作,二是只有在最后一步才会计算相关的transformation操作)。如果Transformation没有lazy性质的话,每转换一次就要计算一次,最后Action操作的时候还要计算一次,会非常耗内存,也会极大降低计算速度。

     还有一种情况,如果我们想多次使用同一个RDD,每次都对RDD进行Action操作的话,会极大的消耗Spark的内存,这种情况下,我们可以使用RDD.persist()把这个RDD缓存下来,在内存不足时,可以存储到磁盘(disk)里。在Python中,储存的对象永远是通过Pickle库序列化过的,所以社不设置序列化级别不会产生影响。

---恢复内容结束---

1, RDD的两种操作

  1.Tansformation(转化操作):返回值还是一个RDD

  2.Action(行动操作):返回值不是一个RDD

     第一种Transformation是返回一个新的RDD,如map(),filter()等。这种操作是lazy(惰性)的,即从一个RDD转换生成另一个RDD的操作不是马上执行,只是记录下来,只有等到有Action操作是才会真正启动计算,将生成的新RDD写到内存或hdfs里,不会对原有的RDD的值进行改变。而Action操作才会实际触发Spark计算,对RDD计算出一个结果,并把结果返回到内存或hdfs中,如count(),first()等。
     通俗点理解的话,就是假设你写了一堆程序,里面对数据进行了多次转换,这个时候实际上没有计算,就只是放着这里。在最后出结果的时候会用到Action操作,这个时候Action会执行与之相关的转换操作,运算速度会非常快(一是Action不一定需要调用所有的transformation操作,二是只有在最后一步才会计算相关的transformation操作)。如果Transformation没有lazy性质的话,每转换一次就要计算一次,最后Action操作的时候还要计算一次,会非常耗内存,也会极大降低计算速度。

     还有一种情况,如果我们想多次使用同一个RDD,每次都对RDD进行Action操作的话,会极大的消耗Spark的内存,这种情况下,我们可以使用RDD.persist()把这个RDD缓存下来,在内存不足时,可以存储到磁盘(disk)里。在Python中,储存的对象永远是通过Pickle库序列化过的,所以社不设置序列化级别不会产生影响。
 
 
 
 

RDD基础的更多相关文章

  1. RDD基础-笔记

    RDD编程 基础Spark中的RDD是一个不可变的分布式对象集合.每个RDD都被分为多个分区,这些分区运行在集群中的不同节点上.RDD可以包含Python.java.Scala中任意类型的对象,甚至可 ...

  2. Spark_RDD之RDD基础

    1.什么是RDD RDD(resilient distributed dataset)弹性分布式数据集,每一个RDD都被分为多个分区,分布在集群的不同节点上. 2.RDD的操作 Spark对于数据的操 ...

  3. spark Pair RDD 基础操作

    下面是Pair RDD的API讲解 转化操作 reduceByKey:合并具有相同键的值: groupByKey:对具有相同键的值进行分组: keys:返回一个仅包含键值的RDD: values:返回 ...

  4. Spark Core源代码分析: RDD基础

    RDD RDD初始參数:上下文和一组依赖 abstract class RDD[T: ClassTag]( @transient private var sc: SparkContext, @tran ...

  5. spark入门(二)RDD基础操作

    1 简述 spark中的RDD是一个分布式的元素集合. 在spark中,对数据的所有操作不外乎创建RDD,转化RDD以及调用RDD操作进行求值,而这些操作,spark会自动将RDD中的数据分发到集群上 ...

  6. Spark快速大数据分析之RDD基础

    Spark 中的RDD 就是一个不可变的分布式对象集合.每个RDD 都被分为多个分区,这些分区运行在集群中的不同节点上.RDD 可以包含Python.Java.Scala中任意类型的对象,甚至可以包含 ...

  7. Spark基础:(二)Spark RDD编程

    1.RDD基础 Spark中的RDD就是一个不可变的分布式对象集合.每个RDD都被分为多个分区,这些分区运行在分区的不同节点上. 用户可以通过两种方式创建RDD: (1)读取外部数据集====> ...

  8. Catalyst揭秘 Day7 SQL转为RDD的具体实现

    Catalyst揭秘 Day7 SQL转为RDD的具体实现 从技术角度,越底层和硬件偶尔越高,可动弹的空间越小,而越高层,可动用的智慧是更多.Catalyst就是个高层的智慧. Catalyst已经逐 ...

  9. Spark 核心概念 RDD 详解

    RDD全称叫做弹性分布式数据集(Resilient Distributed Datasets),它是一种分布式的内存抽象,表示一个只读的记录分区的集合,它只能通过其他RDD转换而创建,为此,RDD支持 ...

随机推荐

  1. Android弹幕编程设计实现的解决方案(一)

     Android弹幕编程设计实现的解决方案(一) 在现在的一些视频类网站.视频类直播网站,比如A站和B站,当视频在播放的时候,会在屏幕上出现一些滚动的字幕,这些字幕是UGC,通常是用户的评论,称之 ...

  2. ssh 监听多个端口

    修改sshd的配置文件 默认位置:/etc/ssh/sshd_config 注释掉 Port 这行   然后添加 ListenAddress 行 e.g:  ListenAddress 192.168 ...

  3. [转]使用fdisk磁盘分区和 Linux 文件系统

    概述 在本文中,学习磁盘分区和 Linux 文件系统相关内容.学习: 创建分区 使用 mkfs 命令来设置 ext2.ext3.ext4.xfs.Reiser v3 和 vfat 文件系统 创建和管理 ...

  4. msp430入门编程42

    msp430中C语言的软件工程--事件触发程序结构

  5. 一份关于webpack2和模块打包的新手指南(一)

    webpack已成为现代Web开发中最重要的工具之一.它是一个用于JavaScript的模块打包工具,但是它也可以转换所有的前端资源,例如HTML和CSS,甚至是图片.它可以让你更好地控制应用程序所产 ...

  6. Spring实战Day2

    创建对象之后如何体现对象之间的依赖? Spring容器负责创建Bean和依赖注入,那么Spring是怎么将Bean装配在一起的呢? Spring提供了三种方式装配机制 1.隐式的bean发现机制和自动 ...

  7. Spring中基于AOP的@AspectJ

    以下内容引用自http://wiki.jikexueyuan.com/project/spring/aop-with-spring-framenwork/aspectj-based-aop-with- ...

  8. GO语言 --socket.io

    socket.io是对websocket的封装以及扩展, 可以跨平台使用, 具体可看官网.. GO语言实现: package main import ( "github.com/googol ...

  9. Linux信号通讯编程

    信号通讯流程为: ①进程A/内核选择信号 ②发送信号 ③进程B接收信号并处理 Linux系统支持的全部信号均定义在/usr/include/asm/signal.h.当中常见的信号有: ①SIGKIL ...

  10. 【stl学习笔记】deques

    deque双向队列是一种双向开口的连续线性空间,可以高效的在头尾两端插入和删除元素,deque在接口上和vector非常相似.deque的实现比较复杂,内部会维护一个map(注意!不是STL中的map ...