RDD的两种操作

  1.Tansformation(转化操作):返回值还是一个RDD

  2.Action(行动操作):返回值不是一个RDD

     第一种Transformation是返回一个新的RDD,如map(),filter()等。这种操作是lazy(惰性)的,即从一个RDD转换生成另一个RDD的操作不是马上执行,只是记录下来,只有等到有Action操作是才会真正启动计算,将生成的新RDD写到内存或hdfs里,不会对原有的RDD的值进行改变。而Action操作才会实际触发Spark计算,对RDD计算出一个结果,并把结果返回到内存或hdfs中,如count(),first()等。
     通俗点理解的话,就是假设你写了一堆程序,里面对数据进行了多次转换,这个时候实际上没有计算,就只是放着这里。在最后出结果的时候会用到Action操作,这个时候Action会执行与之相关的转换操作,运算速度会非常快(一是Action不一定需要调用所有的transformation操作,二是只有在最后一步才会计算相关的transformation操作)。如果Transformation没有lazy性质的话,每转换一次就要计算一次,最后Action操作的时候还要计算一次,会非常耗内存,也会极大降低计算速度。

     还有一种情况,如果我们想多次使用同一个RDD,每次都对RDD进行Action操作的话,会极大的消耗Spark的内存,这种情况下,我们可以使用RDD.persist()把这个RDD缓存下来,在内存不足时,可以存储到磁盘(disk)里。在Python中,储存的对象永远是通过Pickle库序列化过的,所以社不设置序列化级别不会产生影响。

---恢复内容结束---

1, RDD的两种操作

  1.Tansformation(转化操作):返回值还是一个RDD

  2.Action(行动操作):返回值不是一个RDD

     第一种Transformation是返回一个新的RDD,如map(),filter()等。这种操作是lazy(惰性)的,即从一个RDD转换生成另一个RDD的操作不是马上执行,只是记录下来,只有等到有Action操作是才会真正启动计算,将生成的新RDD写到内存或hdfs里,不会对原有的RDD的值进行改变。而Action操作才会实际触发Spark计算,对RDD计算出一个结果,并把结果返回到内存或hdfs中,如count(),first()等。
     通俗点理解的话,就是假设你写了一堆程序,里面对数据进行了多次转换,这个时候实际上没有计算,就只是放着这里。在最后出结果的时候会用到Action操作,这个时候Action会执行与之相关的转换操作,运算速度会非常快(一是Action不一定需要调用所有的transformation操作,二是只有在最后一步才会计算相关的transformation操作)。如果Transformation没有lazy性质的话,每转换一次就要计算一次,最后Action操作的时候还要计算一次,会非常耗内存,也会极大降低计算速度。

     还有一种情况,如果我们想多次使用同一个RDD,每次都对RDD进行Action操作的话,会极大的消耗Spark的内存,这种情况下,我们可以使用RDD.persist()把这个RDD缓存下来,在内存不足时,可以存储到磁盘(disk)里。在Python中,储存的对象永远是通过Pickle库序列化过的,所以社不设置序列化级别不会产生影响。
 
 
 
 

RDD基础的更多相关文章

  1. RDD基础-笔记

    RDD编程 基础Spark中的RDD是一个不可变的分布式对象集合.每个RDD都被分为多个分区,这些分区运行在集群中的不同节点上.RDD可以包含Python.java.Scala中任意类型的对象,甚至可 ...

  2. Spark_RDD之RDD基础

    1.什么是RDD RDD(resilient distributed dataset)弹性分布式数据集,每一个RDD都被分为多个分区,分布在集群的不同节点上. 2.RDD的操作 Spark对于数据的操 ...

  3. spark Pair RDD 基础操作

    下面是Pair RDD的API讲解 转化操作 reduceByKey:合并具有相同键的值: groupByKey:对具有相同键的值进行分组: keys:返回一个仅包含键值的RDD: values:返回 ...

  4. Spark Core源代码分析: RDD基础

    RDD RDD初始參数:上下文和一组依赖 abstract class RDD[T: ClassTag]( @transient private var sc: SparkContext, @tran ...

  5. spark入门(二)RDD基础操作

    1 简述 spark中的RDD是一个分布式的元素集合. 在spark中,对数据的所有操作不外乎创建RDD,转化RDD以及调用RDD操作进行求值,而这些操作,spark会自动将RDD中的数据分发到集群上 ...

  6. Spark快速大数据分析之RDD基础

    Spark 中的RDD 就是一个不可变的分布式对象集合.每个RDD 都被分为多个分区,这些分区运行在集群中的不同节点上.RDD 可以包含Python.Java.Scala中任意类型的对象,甚至可以包含 ...

  7. Spark基础:(二)Spark RDD编程

    1.RDD基础 Spark中的RDD就是一个不可变的分布式对象集合.每个RDD都被分为多个分区,这些分区运行在分区的不同节点上. 用户可以通过两种方式创建RDD: (1)读取外部数据集====> ...

  8. Catalyst揭秘 Day7 SQL转为RDD的具体实现

    Catalyst揭秘 Day7 SQL转为RDD的具体实现 从技术角度,越底层和硬件偶尔越高,可动弹的空间越小,而越高层,可动用的智慧是更多.Catalyst就是个高层的智慧. Catalyst已经逐 ...

  9. Spark 核心概念 RDD 详解

    RDD全称叫做弹性分布式数据集(Resilient Distributed Datasets),它是一种分布式的内存抽象,表示一个只读的记录分区的集合,它只能通过其他RDD转换而创建,为此,RDD支持 ...

随机推荐

  1. 大数据学习——hive基本操作

    1 建表 create table student(id int,name string ,age int) row format delimitedfields terminated by ','; ...

  2. C#窗体学生成绩管理系统

    c#学生成绩管理系统 实现用户登录.注册 所有成绩查询.个人成绩查询 管理员审核.添加.删除用户 项目源码GIT:https://github.com/soulsjie/StuScoreMa.git

  3. Leetcode 222.完全二叉树的节点个数

    完全二叉树的节点个数 给出一个完全二叉树,求出该树的节点个数. 说明: 完全二叉树的定义如下:在完全二叉树中,除了最底层节点可能没填满外,其余每层节点数都达到最大值,并且最下面一层的节点都集中在该层最 ...

  4. zoj 2201 No Brainer

    No Brainer Time Limit: 2 Seconds      Memory Limit: 65536 KB Zombies love to eat brains. Yum. Input ...

  5. bzoj3637 CodeChef SPOJ - QTREE6 Query on a tree VI 题解

    题意: 一棵n个节点的树,节点有黑白两种颜色,初始均为白色.两种操作:1.更改一个节点的颜色;2.询问一个节点所处的颜色相同的联通块的大小. 思路: 1.每个节点记录仅考虑其子树时,假设其为黑色时所处 ...

  6. 【板+背包】多重背包 HDU Coins

    http://acm.hdu.edu.cn/showproblem.php?pid=2844 [题意] 给定n种价值为Ci,个数为Wi的硬币,问在1~V中的这些数中哪些数能由这些硬币组成? [思路] ...

  7. Spring Boot配置方式

    Spring提供了xml.注解.Java配置.groovy配置实现Bean的创建和注入. 配置元数据 无论xml配置.注解配置还是Java配置,都被称为配置元数据,所谓元数据即描述数据的数据.元数据本 ...

  8. hdu2157:How many ways??

    n<=20个点m<=100条边有向图不带权,t个询问问Ai到Bi的经过k<=20条边方案数多少. f[i][j]--i到j的方案数,,初始化成初邻接矩阵,这样做一次就得到2条路最短路 ...

  9. 数据库备份与还原c#.net实现

    原文发布时间为:2008-10-25 -- 来源于本人的百度文章 [由搬家工具导入] 数据库备份与还原c#.net实现: 页面上面有 备份,还原,下拉菜单(浏览备份文件夹下面的所有文件名),删除(删除 ...

  10. SeaJS项目完整实例【转】

    index.html——主页面. sea.js——SeaJS脚本. init.js——init模块,入口模块,依赖data.jquery.style三个模块.由主页面载入. data.js——data ...