RDD的两种操作

  1.Tansformation(转化操作):返回值还是一个RDD

  2.Action(行动操作):返回值不是一个RDD

     第一种Transformation是返回一个新的RDD,如map(),filter()等。这种操作是lazy(惰性)的,即从一个RDD转换生成另一个RDD的操作不是马上执行,只是记录下来,只有等到有Action操作是才会真正启动计算,将生成的新RDD写到内存或hdfs里,不会对原有的RDD的值进行改变。而Action操作才会实际触发Spark计算,对RDD计算出一个结果,并把结果返回到内存或hdfs中,如count(),first()等。
     通俗点理解的话,就是假设你写了一堆程序,里面对数据进行了多次转换,这个时候实际上没有计算,就只是放着这里。在最后出结果的时候会用到Action操作,这个时候Action会执行与之相关的转换操作,运算速度会非常快(一是Action不一定需要调用所有的transformation操作,二是只有在最后一步才会计算相关的transformation操作)。如果Transformation没有lazy性质的话,每转换一次就要计算一次,最后Action操作的时候还要计算一次,会非常耗内存,也会极大降低计算速度。

     还有一种情况,如果我们想多次使用同一个RDD,每次都对RDD进行Action操作的话,会极大的消耗Spark的内存,这种情况下,我们可以使用RDD.persist()把这个RDD缓存下来,在内存不足时,可以存储到磁盘(disk)里。在Python中,储存的对象永远是通过Pickle库序列化过的,所以社不设置序列化级别不会产生影响。

---恢复内容结束---

1, RDD的两种操作

  1.Tansformation(转化操作):返回值还是一个RDD

  2.Action(行动操作):返回值不是一个RDD

     第一种Transformation是返回一个新的RDD,如map(),filter()等。这种操作是lazy(惰性)的,即从一个RDD转换生成另一个RDD的操作不是马上执行,只是记录下来,只有等到有Action操作是才会真正启动计算,将生成的新RDD写到内存或hdfs里,不会对原有的RDD的值进行改变。而Action操作才会实际触发Spark计算,对RDD计算出一个结果,并把结果返回到内存或hdfs中,如count(),first()等。
     通俗点理解的话,就是假设你写了一堆程序,里面对数据进行了多次转换,这个时候实际上没有计算,就只是放着这里。在最后出结果的时候会用到Action操作,这个时候Action会执行与之相关的转换操作,运算速度会非常快(一是Action不一定需要调用所有的transformation操作,二是只有在最后一步才会计算相关的transformation操作)。如果Transformation没有lazy性质的话,每转换一次就要计算一次,最后Action操作的时候还要计算一次,会非常耗内存,也会极大降低计算速度。

     还有一种情况,如果我们想多次使用同一个RDD,每次都对RDD进行Action操作的话,会极大的消耗Spark的内存,这种情况下,我们可以使用RDD.persist()把这个RDD缓存下来,在内存不足时,可以存储到磁盘(disk)里。在Python中,储存的对象永远是通过Pickle库序列化过的,所以社不设置序列化级别不会产生影响。
 
 
 
 

RDD基础的更多相关文章

  1. RDD基础-笔记

    RDD编程 基础Spark中的RDD是一个不可变的分布式对象集合.每个RDD都被分为多个分区,这些分区运行在集群中的不同节点上.RDD可以包含Python.java.Scala中任意类型的对象,甚至可 ...

  2. Spark_RDD之RDD基础

    1.什么是RDD RDD(resilient distributed dataset)弹性分布式数据集,每一个RDD都被分为多个分区,分布在集群的不同节点上. 2.RDD的操作 Spark对于数据的操 ...

  3. spark Pair RDD 基础操作

    下面是Pair RDD的API讲解 转化操作 reduceByKey:合并具有相同键的值: groupByKey:对具有相同键的值进行分组: keys:返回一个仅包含键值的RDD: values:返回 ...

  4. Spark Core源代码分析: RDD基础

    RDD RDD初始參数:上下文和一组依赖 abstract class RDD[T: ClassTag]( @transient private var sc: SparkContext, @tran ...

  5. spark入门(二)RDD基础操作

    1 简述 spark中的RDD是一个分布式的元素集合. 在spark中,对数据的所有操作不外乎创建RDD,转化RDD以及调用RDD操作进行求值,而这些操作,spark会自动将RDD中的数据分发到集群上 ...

  6. Spark快速大数据分析之RDD基础

    Spark 中的RDD 就是一个不可变的分布式对象集合.每个RDD 都被分为多个分区,这些分区运行在集群中的不同节点上.RDD 可以包含Python.Java.Scala中任意类型的对象,甚至可以包含 ...

  7. Spark基础:(二)Spark RDD编程

    1.RDD基础 Spark中的RDD就是一个不可变的分布式对象集合.每个RDD都被分为多个分区,这些分区运行在分区的不同节点上. 用户可以通过两种方式创建RDD: (1)读取外部数据集====> ...

  8. Catalyst揭秘 Day7 SQL转为RDD的具体实现

    Catalyst揭秘 Day7 SQL转为RDD的具体实现 从技术角度,越底层和硬件偶尔越高,可动弹的空间越小,而越高层,可动用的智慧是更多.Catalyst就是个高层的智慧. Catalyst已经逐 ...

  9. Spark 核心概念 RDD 详解

    RDD全称叫做弹性分布式数据集(Resilient Distributed Datasets),它是一种分布式的内存抽象,表示一个只读的记录分区的集合,它只能通过其他RDD转换而创建,为此,RDD支持 ...

随机推荐

  1. BZOJ 1303: [CQOI2009]中位数图 【水题】

    给出1~n的一个排列,统计该排列有多少个长度为奇数的连续子序列的中位数是b.中位数是指把所有元素从小到大排列后,位于中间的数. Input 第一行为两个正整数n和b ,第二行为1~n 的排列. Out ...

  2. Xcode warning:Auto property synthesis will not synthesize property

    iOS 警告提示如下: 添加 @dynamic告诉编译器这个属性是动态的,动态的意思是等你编译的时候就知道了它只在本类合成; 如下:

  3. 一个Tomcat最多支持多少用户的并发?

    ,也就是说同时支持 另外,在 Java 中每开启一个线程需要耗用 1MB 的 JVM 内存空间用于作为线程栈之用.Tomcat的最大并发数是可以配置的,实际运用中,最大并发数与硬件性能和CPU数量都有 ...

  4. 转 gSOAP中使用TCP协议传输数据

    一  模型 TCP/IP是一个协议族(Internet protocol suite),包含众多的协议,传输控制协议(TCP)和网际协议(IP)分属不同的层次,是保证数据完整传输的两个基本的重要协议. ...

  5. Spring基于Java的JSR-250注解

    以下内容引用自http://wiki.jikexueyuan.com/project/spring/annotation-based-configuration/spring-jsr250-annot ...

  6. 还原数据库出现“未获得排他訪问”解决方法(杀死数据库连接的存储过程sqlserver)

    在master数据库下创建存储步骤例如以下: createproc killspid (@dbnamevarchar(20)) as begin declare@sqlnvarchar(500) de ...

  7. sendEmail实现邮件报警发送

    安装wget http://caspian.dotconf.net/menu/Software/SendEmail/sendEmail-v1.56.tar.gz tar -xf sendEmail-v ...

  8. [scrapy]实例:爬取jobbole页面

    工程概览: 创建工程 scrapy startproject ArticleSpider 创建spider cd /ArticleSpider/spiders/ 新建jobbole.py # -*- ...

  9. 【转】 一张图看懂开源许可协议,开源许可证GPL、BSD、MIT、Mozilla、Apache和LGPL的区别

    原文:http://blog.csdn.net/testcs_dn/article/details/38496107 ----------------------------------------- ...

  10. HDU OJ Max sum 题目1003

     #include <iostream> #include<stdio.h> #include<stdlib.h> using namespace std; i ...