codeforces 689E E. Mike and Geometry Problem(组合数学)
题目链接:
3 seconds
256 megabytes
standard input
standard output
Mike wants to prepare for IMO but he doesn't know geometry, so his teacher gave him an interesting geometry problem. Let's definef([l, r]) = r - l + 1 to be the number of integer points in the segment [l, r] with l ≤ r (say that  ). You are given two integers nand k and n closed intervals [li, ri] on OX axis and you have to find:
). You are given two integers nand k and n closed intervals [li, ri] on OX axis and you have to find:

In other words, you should find the sum of the number of integer points in the intersection of any k of the segments.
As the answer may be very large, output it modulo 1000000007 (109 + 7).
Mike can't solve this problem so he needs your help. You will help him, won't you?
The first line contains two integers n and k (1 ≤ k ≤ n ≤ 200 000) — the number of segments and the number of segments in intersection groups respectively.
Then n lines follow, the i-th line contains two integers li, ri ( - 109 ≤ li ≤ ri ≤ 109), describing i-th segment bounds.
Print one integer number — the answer to Mike's problem modulo 1000000007 (109 + 7) in the only line.
3 2
1 2
1 3
2 3
5
3 3
1 3
1 3
1 3
3
3 1
1 2
2 3
3 4
6 题意: 在n个区间里选k个,得到的f等于区间交的点数;求所有的选择方案的和; 思路: 对于每个点可以发现,当这个点被num个线段覆盖时,这个点就会被选C(num,k)次,ans=∑C(num,k);
但是区间很大,点的数目居多,所以不可能一个点一个点的这样算,可以发现,相邻的点如果被相同数目的线段覆盖,那么这些点就可以合并成一个区间,所以ans=∑len*C(num,k),len表示这个区间点的个数;看这个点被覆盖了多少次可以采用跟树状数组那样的方法,左右端点+-1; AC代码:
//#include <bits/stdc++.h>
#include <vector>
#include <iostream>
#include <queue>
#include <cmath>
#include <map>
#include <cstring>
#include <algorithm>
#include <cstdio> using namespace std;
#define For(i,j,n) for(int i=j;i<=n;i++)
#define Riep(n) for(int i=1;i<=n;i++)
#define Riop(n) for(int i=0;i<n;i++)
#define Rjep(n) for(int j=1;j<=n;j++)
#define Rjop(n) for(int j=0;j<n;j++)
#define mst(ss,b) memset(ss,b,sizeof(ss));
typedef long long LL;
template<class T> void read(T&num) {
char CH; bool F=false;
for(CH=getchar();CH<''||CH>'';F= CH=='-',CH=getchar());
for(num=;CH>=''&&CH<='';num=num*+CH-'',CH=getchar());
F && (num=-num);
}
int stk[], tp;
template<class T> inline void print(T p) {
if(!p) { puts(""); return; }
while(p) stk[++ tp] = p%, p/=;
while(tp) putchar(stk[tp--] + '');
putchar('\n');
} const LL mod=1e9+;
const double PI=acos(-1.0);
const LL inf=1e18;
const int N=2e5+;
const int maxn=;
const double eps=1e-; int n,k,l[N],r[N];
LL dp[N]; map<int,int>mp; LL pow_mod(int x,LL y)
{
LL s=,base=(LL)x;
while(y)
{
if(y&)s=s*base%mod;
base=base*base%mod;
y>>=;
}
return s;
} void Init()
{
dp[k]=;
For(i,k+,N)
{
LL x=i,temp=pow_mod(x-k,mod-);
dp[i]=dp[i-]*x%mod*temp%mod;
}
}
vector<int>ve;
int main()
{
read(n);read(k);
Init();
For(i,,n)
{
read(l[i]);
mp[l[i]-]++;
ve.push_back(l[i]-);
read(r[i]);
mp[r[i]]--;
ve.push_back(r[i]);
}
sort(ve.begin(),ve.end());
LL ans=;
int num=,prepo=-1e9-;
int w=ve.size();
for(int i=;i<w;i++)
{
int tempo=ve[i],len=tempo-prepo;
if(num>=k)ans=ans+dp[num]*(LL)len%mod,ans%=mod;
if(prepo!=tempo) prepo=tempo,num+=mp[tempo];
}
cout<<ans<<"\n";
return ;
}
codeforces 689E E. Mike and Geometry Problem(组合数学)的更多相关文章
- codeforces 689 E. Mike and Geometry Problem  组合数学 优先队列
		给定一个函数: f([l,r]) = r - l + 1; f(空集) = 0; 即f函数表示闭区间[l,r]的整点的个数 现在给出n个闭区间,和一个数k 从n个区间里面拿出k个区间,然后对这k个区间 ... 
- codeforces 361 E - Mike and Geometry Problem
		原题: Description Mike wants to prepare for IMO but he doesn't know geometry, so his teacher gave him ... 
- CodeForces 689E	Mike and Geometry Problem (离散化+组合数)
		Mike and Geometry Problem 题目链接: http://acm.hust.edu.cn/vjudge/contest/121333#problem/I Description M ... 
- Codeforces Round #361 (Div. 2) E. Mike and Geometry Problem 离散化 排列组合
		E. Mike and Geometry Problem 题目连接: http://www.codeforces.com/contest/689/problem/E Description Mike ... 
- Codeforces Round #361 (Div. 2) E. Mike and Geometry Problem 【逆元求组合数 && 离散化】
		任意门:http://codeforces.com/contest/689/problem/E E. Mike and Geometry Problem time limit per test 3 s ... 
- Codeforces Round #361 (Div. 2) E. Mike and Geometry Problem 离散化+逆元
		E. Mike and Geometry Problem time limit per test 3 seconds memory limit per test 256 megabytes input ... 
- CodeForces 689E Mike and Geometry Problem
		离散化,树状数组,组合数学. 这题的大致思路和$HDU$ $5700$一样.都是求区间交的问题.可以用树状数组维护一下. 这题的话只要计算每一个$i$被统计了几次,假设第$i$点被统计了$ans[i] ... 
- Codeforces Round #361 (Div. 2) E. Mike and Geometry Problem
		题目链接:传送门 题目大意:给你n个区间,求任意k个区间交所包含点的数目之和. 题目思路:将n个区间都离散化掉,然后对于一个覆盖的区间,如果覆盖数cnt>=k,则数目应该加上 区间长度*(cnt ... 
- 【codeforces 798C】Mike and gcd problem
		[题目链接]:http://codeforces.com/contest/798/problem/C [题意] 给你n个数字; 要求你进行若干次操作; 每次操作对第i和第i+1个位置的数字进行; 将 ... 
随机推荐
- iis性能监控
			文章:对于IIS上的应用程序池监控 文章:IIS并发连接数及性能优化 
- [USACO11NOV]牛的障碍Cow Steeplechase(匈牙利算法)
			洛谷传送门 题目描述: 给出N平行于坐标轴的线段,要你选出尽量多的线段使得这些线段两两没有交点(顶点也算),横的与横的,竖的与竖的线段之间保证没有交点,输出最多能选出多少条线段. 因为横的与横的,竖的 ... 
- hdu  3879  最大权闭合图(裸题)
			/* 裸的最大权闭合图 解:参见胡波涛的<最小割模型在信息学竞赛中的应用 #include<stdio.h> #include<string.h> #include< ... 
- k/3cloud表格控件块粘贴代码逻辑
			大家可以在表单插件EntityBlockPasting事件中自己处理,然后将cancel设置为true.以下代码可以参考一下,插件代码中需要将其中一些属性或方法修改,例如this.BusinessIn ... 
- hdu2294:Pendant
			T<=10组数据问K<=30种珠子每种n<=1e9串成1~n长度的序列共有多少种,mod1234567891. 方程没想到.矩阵不会推.很好. f[i][j]--长度i,j种珠子方案 ... 
- Codeforces Round #292 (Div. 2) D. Drazil and Tiles [拓扑排序 dfs]
			传送门 D. Drazil and Tiles time limit per test 2 seconds memory limit per test 256 megabytes Drazil cre ... 
- Heredoc和Nowdoc
			就象heredoc结构类似于双引号字符串,Nowdoc结构是类似于单引号字符串的.Nowdoc结构很象heredoc结构,但是 nowdoc不进行解析操作 . 这种结构很适合用在不需要进行转义的PHP ... 
- ***apache做301重定向的方法
			将不带www的定向到带www去 方法一:加在httpd.conf 1.这里我使用mod_rewrite重写URL的方式来做,做之前朋友记得检查一下你的apache是否已经加载了rewrite模块.如图 ... 
- POJ 2391 floyd二分+拆点+最大流
			Ombrophobic Bovines Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 20904 Accepted: 4 ... 
- 【Java源码】集合类-队列Queue
			一.描述 队列Queue这种数据结构,通常指先进先出(FIFO)这种容器.可以模拟生活中依次排队这种场景. 下面是集合体系继承树: 二.Queue Queue和List一样都是Collection的子 ... 
