题目链接:

E. Mike and Geometry Problem

time limit per test

3 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

Mike wants to prepare for IMO but he doesn't know geometry, so his teacher gave him an interesting geometry problem. Let's definef([l, r]) = r - l + 1 to be the number of integer points in the segment [l, r] with l ≤ r (say that ). You are given two integers nand k and n closed intervals [li, ri] on OX axis and you have to find:

In other words, you should find the sum of the number of integer points in the intersection of any k of the segments.

As the answer may be very large, output it modulo 1000000007 (109 + 7).

Mike can't solve this problem so he needs your help. You will help him, won't you?

 
Input
 

The first line contains two integers n and k (1 ≤ k ≤ n ≤ 200 000) — the number of segments and the number of segments in intersection groups respectively.

Then n lines follow, the i-th line contains two integers li, ri ( - 109 ≤ li ≤ ri ≤ 109), describing i-th segment bounds.

 
Output
 

Print one integer number — the answer to Mike's problem modulo 1000000007 (109 + 7) in the only line.

 
Examples
 
input
3 2
1 2
1 3
2 3
output
5
input
3 3
1 3
1 3
1 3
output
3
input
3 1
1 2
2 3
3 4
output
6

题意:

在n个区间里选k个,得到的f等于区间交的点数;求所有的选择方案的和;

思路:

对于每个点可以发现,当这个点被num个线段覆盖时,这个点就会被选C(num,k)次,ans=∑C(num,k);
但是区间很大,点的数目居多,所以不可能一个点一个点的这样算,可以发现,相邻的点如果被相同数目的线段覆盖,那么这些点就可以合并成一个区间,所以ans=∑len*C(num,k),len表示这个区间点的个数;看这个点被覆盖了多少次可以采用跟树状数组那样的方法,左右端点+-1; AC代码:
//#include <bits/stdc++.h>
#include <vector>
#include <iostream>
#include <queue>
#include <cmath>
#include <map>
#include <cstring>
#include <algorithm>
#include <cstdio> using namespace std;
#define For(i,j,n) for(int i=j;i<=n;i++)
#define Riep(n) for(int i=1;i<=n;i++)
#define Riop(n) for(int i=0;i<n;i++)
#define Rjep(n) for(int j=1;j<=n;j++)
#define Rjop(n) for(int j=0;j<n;j++)
#define mst(ss,b) memset(ss,b,sizeof(ss));
typedef long long LL;
template<class T> void read(T&num) {
char CH; bool F=false;
for(CH=getchar();CH<''||CH>'';F= CH=='-',CH=getchar());
for(num=;CH>=''&&CH<='';num=num*+CH-'',CH=getchar());
F && (num=-num);
}
int stk[], tp;
template<class T> inline void print(T p) {
if(!p) { puts(""); return; }
while(p) stk[++ tp] = p%, p/=;
while(tp) putchar(stk[tp--] + '');
putchar('\n');
} const LL mod=1e9+;
const double PI=acos(-1.0);
const LL inf=1e18;
const int N=2e5+;
const int maxn=;
const double eps=1e-; int n,k,l[N],r[N];
LL dp[N]; map<int,int>mp; LL pow_mod(int x,LL y)
{
LL s=,base=(LL)x;
while(y)
{
if(y&)s=s*base%mod;
base=base*base%mod;
y>>=;
}
return s;
} void Init()
{
dp[k]=;
For(i,k+,N)
{
LL x=i,temp=pow_mod(x-k,mod-);
dp[i]=dp[i-]*x%mod*temp%mod;
}
}
vector<int>ve;
int main()
{
read(n);read(k);
Init();
For(i,,n)
{
read(l[i]);
mp[l[i]-]++;
ve.push_back(l[i]-);
read(r[i]);
mp[r[i]]--;
ve.push_back(r[i]);
}
sort(ve.begin(),ve.end());
LL ans=;
int num=,prepo=-1e9-;
int w=ve.size();
for(int i=;i<w;i++)
{
int tempo=ve[i],len=tempo-prepo;
if(num>=k)ans=ans+dp[num]*(LL)len%mod,ans%=mod;
if(prepo!=tempo) prepo=tempo,num+=mp[tempo];
}
cout<<ans<<"\n";
return ;
}

codeforces 689E E. Mike and Geometry Problem(组合数学)的更多相关文章

  1. codeforces 689 E. Mike and Geometry Problem 组合数学 优先队列

    给定一个函数: f([l,r]) = r - l + 1; f(空集) = 0; 即f函数表示闭区间[l,r]的整点的个数 现在给出n个闭区间,和一个数k 从n个区间里面拿出k个区间,然后对这k个区间 ...

  2. codeforces 361 E - Mike and Geometry Problem

    原题: Description Mike wants to prepare for IMO but he doesn't know geometry, so his teacher gave him ...

  3. CodeForces 689E Mike and Geometry Problem (离散化+组合数)

    Mike and Geometry Problem 题目链接: http://acm.hust.edu.cn/vjudge/contest/121333#problem/I Description M ...

  4. Codeforces Round #361 (Div. 2) E. Mike and Geometry Problem 离散化 排列组合

    E. Mike and Geometry Problem 题目连接: http://www.codeforces.com/contest/689/problem/E Description Mike ...

  5. Codeforces Round #361 (Div. 2) E. Mike and Geometry Problem 【逆元求组合数 && 离散化】

    任意门:http://codeforces.com/contest/689/problem/E E. Mike and Geometry Problem time limit per test 3 s ...

  6. Codeforces Round #361 (Div. 2) E. Mike and Geometry Problem 离散化+逆元

    E. Mike and Geometry Problem time limit per test 3 seconds memory limit per test 256 megabytes input ...

  7. CodeForces 689E Mike and Geometry Problem

    离散化,树状数组,组合数学. 这题的大致思路和$HDU$ $5700$一样.都是求区间交的问题.可以用树状数组维护一下. 这题的话只要计算每一个$i$被统计了几次,假设第$i$点被统计了$ans[i] ...

  8. Codeforces Round #361 (Div. 2) E. Mike and Geometry Problem

    题目链接:传送门 题目大意:给你n个区间,求任意k个区间交所包含点的数目之和. 题目思路:将n个区间都离散化掉,然后对于一个覆盖的区间,如果覆盖数cnt>=k,则数目应该加上 区间长度*(cnt ...

  9. 【codeforces 798C】Mike and gcd problem

    [题目链接]:http://codeforces.com/contest/798/problem/C [题意] 给你n个数字; 要求你进行若干次操作; 每次操作对第i和第i+1个位置的数字进行; 将 ...

随机推荐

  1. Leetcode 300.最长上升子序列

    最长上升子序列 给定一个无序的整数数组,找到其中最长上升子序列的长度. 示例: 输入: [10,9,2,5,3,7,101,18] 输出: 4 解释: 最长的上升子序列是 [2,3,7,101],它的 ...

  2. solr请求处理器列表

    List of Request Handlers Available The Javadocs contain a complete list of Request Handlers. Many of ...

  3. Generate Parentheses(组合,回溯)

    Given n pairs of parentheses, write a function to generate all combinations of well-formed parenthes ...

  4. springboot整合mybatis,freemarker

    springboot 整合mybaits,,freemarker pom.xml文件 <?xml version="1.0" encoding="UTF-8&quo ...

  5. Weblogic性能优化(图解)

    分类:Weblogic (2034) (1) 若是觉得对您有一丢丢的帮助,烦请顶一下哦,激励我码出更多的帖子,^_^谢谢! 1.数据源性能优化 1.1连接池参数配置 登录weblogic控制台,占击“ ...

  6. 破解电信光猫华为HG8120C关闭路由功能方法

    昨天电信的工作人员来安装了电信的光纤宽带,使用的是华为HG8120C这款光电转换器与路由器一体机 这导致下级路由无法直接使用PPPOE拨号连接到互联网,且无法使用端口映射来实现外网访问 而华为开放给用 ...

  7. Java SpringMVC实现PC端网页微信扫码支付完整版

    一:前期微信支付扫盲知识 前提条件是已经有申请了微信支付功能的公众号,然后我们需要得到公众号APPID和微信商户号,这个分别在微信公众号和微信支付商家平台上面可以发现.其实在你申请成功支付功能之后,微 ...

  8. Oracle 数据库管理员的任务

    设计.实施和维护 Oracle 数据库时,按优先次序排列的任务包括:   1. 确定数据库服务器硬件   2. 安装 Oracle 软件   3. 为数据库和安全策略制定计划   4. 创建.移植和打 ...

  9. VS2012关于hash_map的使用简略

    VS关于hash_map使用的一些经常使用构造方法汇总,包含基本类型和结构体,相信够一般模仿使用: # include<hash_map> #include<iostream> ...

  10. centos编辑界面和图形界面登陆切换设置

    输入命令 vi /etc/inittab 到最后一行.把5改成3 保存退出. 各数字的含义: #   0 - halt (Do NOT set initdefault to this)         ...