题目链接:

E. Mike and Geometry Problem

time limit per test

3 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

Mike wants to prepare for IMO but he doesn't know geometry, so his teacher gave him an interesting geometry problem. Let's definef([l, r]) = r - l + 1 to be the number of integer points in the segment [l, r] with l ≤ r (say that ). You are given two integers nand k and n closed intervals [li, ri] on OX axis and you have to find:

In other words, you should find the sum of the number of integer points in the intersection of any k of the segments.

As the answer may be very large, output it modulo 1000000007 (109 + 7).

Mike can't solve this problem so he needs your help. You will help him, won't you?

 
Input
 

The first line contains two integers n and k (1 ≤ k ≤ n ≤ 200 000) — the number of segments and the number of segments in intersection groups respectively.

Then n lines follow, the i-th line contains two integers li, ri ( - 109 ≤ li ≤ ri ≤ 109), describing i-th segment bounds.

 
Output
 

Print one integer number — the answer to Mike's problem modulo 1000000007 (109 + 7) in the only line.

 
Examples
 
input
3 2
1 2
1 3
2 3
output
5
input
3 3
1 3
1 3
1 3
output
3
input
3 1
1 2
2 3
3 4
output
6

题意:

在n个区间里选k个,得到的f等于区间交的点数;求所有的选择方案的和;

思路:

对于每个点可以发现,当这个点被num个线段覆盖时,这个点就会被选C(num,k)次,ans=∑C(num,k);
但是区间很大,点的数目居多,所以不可能一个点一个点的这样算,可以发现,相邻的点如果被相同数目的线段覆盖,那么这些点就可以合并成一个区间,所以ans=∑len*C(num,k),len表示这个区间点的个数;看这个点被覆盖了多少次可以采用跟树状数组那样的方法,左右端点+-1; AC代码:
//#include <bits/stdc++.h>
#include <vector>
#include <iostream>
#include <queue>
#include <cmath>
#include <map>
#include <cstring>
#include <algorithm>
#include <cstdio> using namespace std;
#define For(i,j,n) for(int i=j;i<=n;i++)
#define Riep(n) for(int i=1;i<=n;i++)
#define Riop(n) for(int i=0;i<n;i++)
#define Rjep(n) for(int j=1;j<=n;j++)
#define Rjop(n) for(int j=0;j<n;j++)
#define mst(ss,b) memset(ss,b,sizeof(ss));
typedef long long LL;
template<class T> void read(T&num) {
char CH; bool F=false;
for(CH=getchar();CH<''||CH>'';F= CH=='-',CH=getchar());
for(num=;CH>=''&&CH<='';num=num*+CH-'',CH=getchar());
F && (num=-num);
}
int stk[], tp;
template<class T> inline void print(T p) {
if(!p) { puts(""); return; }
while(p) stk[++ tp] = p%, p/=;
while(tp) putchar(stk[tp--] + '');
putchar('\n');
} const LL mod=1e9+;
const double PI=acos(-1.0);
const LL inf=1e18;
const int N=2e5+;
const int maxn=;
const double eps=1e-; int n,k,l[N],r[N];
LL dp[N]; map<int,int>mp; LL pow_mod(int x,LL y)
{
LL s=,base=(LL)x;
while(y)
{
if(y&)s=s*base%mod;
base=base*base%mod;
y>>=;
}
return s;
} void Init()
{
dp[k]=;
For(i,k+,N)
{
LL x=i,temp=pow_mod(x-k,mod-);
dp[i]=dp[i-]*x%mod*temp%mod;
}
}
vector<int>ve;
int main()
{
read(n);read(k);
Init();
For(i,,n)
{
read(l[i]);
mp[l[i]-]++;
ve.push_back(l[i]-);
read(r[i]);
mp[r[i]]--;
ve.push_back(r[i]);
}
sort(ve.begin(),ve.end());
LL ans=;
int num=,prepo=-1e9-;
int w=ve.size();
for(int i=;i<w;i++)
{
int tempo=ve[i],len=tempo-prepo;
if(num>=k)ans=ans+dp[num]*(LL)len%mod,ans%=mod;
if(prepo!=tempo) prepo=tempo,num+=mp[tempo];
}
cout<<ans<<"\n";
return ;
}

codeforces 689E E. Mike and Geometry Problem(组合数学)的更多相关文章

  1. codeforces 689 E. Mike and Geometry Problem 组合数学 优先队列

    给定一个函数: f([l,r]) = r - l + 1; f(空集) = 0; 即f函数表示闭区间[l,r]的整点的个数 现在给出n个闭区间,和一个数k 从n个区间里面拿出k个区间,然后对这k个区间 ...

  2. codeforces 361 E - Mike and Geometry Problem

    原题: Description Mike wants to prepare for IMO but he doesn't know geometry, so his teacher gave him ...

  3. CodeForces 689E Mike and Geometry Problem (离散化+组合数)

    Mike and Geometry Problem 题目链接: http://acm.hust.edu.cn/vjudge/contest/121333#problem/I Description M ...

  4. Codeforces Round #361 (Div. 2) E. Mike and Geometry Problem 离散化 排列组合

    E. Mike and Geometry Problem 题目连接: http://www.codeforces.com/contest/689/problem/E Description Mike ...

  5. Codeforces Round #361 (Div. 2) E. Mike and Geometry Problem 【逆元求组合数 && 离散化】

    任意门:http://codeforces.com/contest/689/problem/E E. Mike and Geometry Problem time limit per test 3 s ...

  6. Codeforces Round #361 (Div. 2) E. Mike and Geometry Problem 离散化+逆元

    E. Mike and Geometry Problem time limit per test 3 seconds memory limit per test 256 megabytes input ...

  7. CodeForces 689E Mike and Geometry Problem

    离散化,树状数组,组合数学. 这题的大致思路和$HDU$ $5700$一样.都是求区间交的问题.可以用树状数组维护一下. 这题的话只要计算每一个$i$被统计了几次,假设第$i$点被统计了$ans[i] ...

  8. Codeforces Round #361 (Div. 2) E. Mike and Geometry Problem

    题目链接:传送门 题目大意:给你n个区间,求任意k个区间交所包含点的数目之和. 题目思路:将n个区间都离散化掉,然后对于一个覆盖的区间,如果覆盖数cnt>=k,则数目应该加上 区间长度*(cnt ...

  9. 【codeforces 798C】Mike and gcd problem

    [题目链接]:http://codeforces.com/contest/798/problem/C [题意] 给你n个数字; 要求你进行若干次操作; 每次操作对第i和第i+1个位置的数字进行; 将 ...

随机推荐

  1. jquery版本的问题造成第二次全选无效

    注意:第一种方式点击全选按钮 第一次全选有用第二次全选无效.因为jquery1.7以上的版本用此方法只能第一次好用,第二次就会失效,用第二种方式解决

  2. POJ1061青蛙的约会

    Description 两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面.它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止.可是它们出发之前忘记了一件很重要的事 ...

  3. poj 2081 简单递推

    #include<stdio.h> #include<string.h> #define N 510000 int dp[N]; int f[10000000]; int ma ...

  4. hdu4135 Co-prime【容斥原理】

    Co-prime Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total S ...

  5. 给Ubuntu更换成163的源(sources.list)Unable to locate package

    Refer to http://www.crifan.com/ubuntu_change_sources_list_to_163/ 1. backup /etc/apt/sources.list 2. ...

  6. Dividing--hdu1059(动态规划)

    Problem Description Marsha and Bill own a collection of marbles. They want to split the collection a ...

  7. 框架-弹出选择框(Jquery传递Json数组)

    给一个button按钮,执行方法 Json传值$("body").on("click", "#btnsure", function() {  ...

  8. Go---设计模式(策略模式)

    策略模式定义了算法家族,在调用算法家族的时候不感知算法的变化,客户也不会受到影响. 下面用<大话设计模式>中的一个实例进行改写. 例:超市中经常进行促销活动,促销活动的促销方法就是一个个策 ...

  9. Android实战简易教程-第三十九枪(第三方短信验证平台Mob和验证码自己主动填入功能结合实例)

    用户注冊或者找回password时通常会用到短信验证功能.这里我们使用第三方的短信平台进行验证实例. 我们用到第三方短信验证平台是Mob,地址为:http://mob.com/ 一.注冊用户.获取SD ...

  10. 【转】apache storm 内置的定时机制

    原文:http://www.cnblogs.com/kqdongnanf/p/4778672.html ------------------------------------------------ ...