洛谷 - P2774 - 方格取数问题 - 二分图最大独立点集 - 最小割
https://www.luogu.org/problemnew/show/P2774
把两个相邻的节点连边,这些边就是要方便最小割割断其他边存在的,容量无穷。
这种类似的问题的话,把二分图的一部分(黑点)连S,容量为其价值,另一部分(白点)连T,容量也是其价值。
因为上面的边存在我们在最小割的时候需要割断一些边表示这个点不被取到。
但是这个和最大权闭合子图有什么不同呢,为什么白色点好像和最大权闭合子图中的负权点得到了类似的待遇?
是不是可以这样转化,先假设获得了所有黑点白点的权值,因为某些黑点的存在你必须去购买它相邻的白点,付出白点权值的代价,所以白点就是负权点。
所以我们要么获得黑色点和他相邻的至多4个白点并付出白点的权值的代价(最小割割断4个白点),要么我们舍弃这个黑色点但不需要购买白点。
!!!
意思就是其实二分图最大独立点集是最大权闭合子图的简化版。
据说还有二分图最小顶点覆盖=二分图顶点数-二分图最大独立点集,不知什么意思。
法克,n和m写反了。
#include<bits/stdc++.h>
using namespace std;
#define ll long long /* dinic begin */ const int MAXN=;
const int MAXM=;
const int INF=0x3f3f3f3f;
struct Edge{
int to,next,cap,flow;
}edge[MAXM]; int tol;
int head[MAXN]; void init(){
tol=;
memset(head,-,sizeof(head));
} void addedge(int u,int v,int w){
edge[tol].to=v;edge[tol].cap=w;edge[tol].flow=;
edge[tol].next=head[u];head[u]=tol++;
edge[tol].to=u;edge[tol].cap=;edge[tol].flow=;
edge[tol].next=head[v];head[v]=tol++;
} int Q[MAXN];
int dep[MAXN],cur[MAXN],sta[MAXN];
bool bfs(int s,int t,int n){
int front=,tail=;
memset(dep,-,sizeof(dep[])*(n+));
dep[s]=;
Q[tail++]=s;
while(front<tail){
int u=Q[front++];
for(int i=head[u];i!=-;i=edge[i].next){
int v=edge[i].to;
if(edge[i].cap>edge[i].flow&&dep[v]==-){
dep[v]=dep[u]+;
if(v==t)
return true;
Q[tail++]=v;
}
}
}
return false;
} int dinic(int s,int t,int n){
//n最后一个节点的编号的下一个编号
int maxflow=;
while(bfs(s,t,n)){
for(int i=;i<n;i++)cur[i]=head[i];
int u=s,tail=;
while(cur[s]!=-){
if(u==t){
int tp=INF;
for(int i=tail-;i>=;i--){
tp=min(tp,edge[sta[i]].cap-edge[sta[i]].flow); }
maxflow+=tp;
for(int i=tail-;i>=;i--){
edge[sta[i]].flow+=tp;
edge[sta[i]^].flow-=tp;
if(edge[sta[i]].cap-edge[sta[i]].flow==)
tail=i;
}
u=edge[sta[tail]^].to; }
else if(cur[u]!=-&&edge[cur[u]].cap>edge[cur[u]].flow
&&dep[u]+==dep[edge[cur[u]].to]){
sta[tail++]=cur[u];
u=edge[cur[u]].to;
}
else{
while(u!=s&&cur[u]==-){
u=edge[sta[--tail]^].to;
}
cur[u]=edge[cur[u]].next;
}
}
}
return maxflow;
} /* dinic end */ int c[][]; int n,m;
int id(int i,int j){
return (i-)*m+j;
} int main(){
init();
scanf("%d%d",&n,&m);
ll sum=;
for(int i=;i<=n;i++){
for(int j=;j<=m;j++){
scanf("%d",&c[i][j]);
sum+=c[i][j];
}
} int s=,t=*n*m+;
for(int i=;i<=n;i++){
for(int j=;j<=m;j++){
if((i+j)%==){
//黑点
addedge(s,id(i,j),c[i][j]);
}
else{
addedge(id(i,j),t,c[i][j]);
}
}
} for(int i=;i<=n;i++){
for(int j=;j<=m;j++){
if((i+j)%==){
//黑点
if(i>){
addedge(id(i,j),id(i-,j),INF);
}
if(j>){
addedge(id(i,j),id(i,j-),INF);
}
if(i+<=n){
addedge(id(i,j),id(i+,j),INF);
}
if(j+<=m){
addedge(id(i,j),id(i,j+),INF);
}
}
}
} int maxflow=dinic(s,t,t+);
printf("%lld\n",sum-maxflow); }
洛谷 - P2774 - 方格取数问题 - 二分图最大独立点集 - 最小割的更多相关文章
- 洛谷 P2774 方格取数问题 解题报告
P2774 方格取数问题 题目背景 none! 题目描述 在一个有 \(m*n\) 个方格的棋盘中,每个方格中有一个正整数.现要从方格中取数,使任意 2 个数所在方格没有公共边,且取出的数的总和最大. ...
- [洛谷P2774]方格取数问题
题目大意:给你一个$n\times m$的方格,要求你从中选择一些数,其中没有相邻两个数,使得最后和最大 题解:网络流,最小割,发现相邻的两个点不可以同时选择,进行黑白染色,原点向黑点连一条容量为点权 ...
- 洛谷 [P2774] 方格取数问题
二分图最大点权独立集 通过题目描述我们可以很明显的看出要通过二分图建模,二分图求最大独立点集很容易,就是建立二分图求n-最小割,然而这里加入了权值,而且权值是在点上的,那么我们对于每个点连一条到源点或 ...
- 洛谷P2774 方格取数问题(最小割)
传送门 考虑一下,答案就是全局和减去舍弃和 不难发现,如果我们按行数+列数的奇偶性分为两类,那么每一类中的数必然互不相邻 那么我们把原图的点分为黑点和白点两类,原地向白点连边,黑点向汇点连边,容量为点 ...
- 洛谷P2774 方格取数问题(最小割)
题意 $n \times m$的矩阵,不能取相邻的元素,问最大能取多少 Sol 首先补集转化一下:最大权值 = sum - 使图不连通的最小权值 进行黑白染色 从S向黑点连权值为点权的边 从白点向T连 ...
- 洛谷 P2774 方格取数问题【最小割】
因为都是正整数,所以当然取得越多越好.先把所有点权加起来,黑白染色后,s向所有黑点连流量为点权的边,所有白点向t连流量为点权的边,然后黑点向相邻的四个白点连流量为inf的边,表示不可割,这样一来,对于 ...
- 棋盘DP三连——洛谷 P1004 方格取数 &&洛谷 P1006 传纸条 &&Codevs 2853 方格游戏
P1004 方格取数 题目描述 设有N $\times N$N×N的方格图(N $\le 9$)(N≤9),我们将其中的某些方格中填入正整数,而其他的方格中则放入数字00.如下图所示(见样例): A ...
- 洛谷 P1004 方格取数 题解
P1004 方格取数 题目描述 设有 \(N \times N\) 的方格图 \((N \le 9)\),我们将其中的某些方格中填入正整数,而其他的方格中则放入数字\(0\).如下图所示(见样例): ...
- 洛谷 P1004 方格取数 【多进程dp】
题目链接:https://www.luogu.org/problemnew/show/P1004 题目描述 设有N*N的方格图(N<=9),我们将其中的某些方格中填入正整数,而其他的方格中则放 ...
随机推荐
- sphinx的配置和管理
网上配置文档众多,但是对着他们的文档来做老是出问题,于是花了点时间研究了一下,写成总结,方便以后查阅.也希望学习sphinx的朋友能少走弯路.Coreseek的安装请参考:http://blog.ch ...
- TinyXML:属性
TiXmlAttribute: 代表XML中的属性,TiXmlAttribute中定义了一系列对属性的操作 TiXmlAttribute的友元类: friend class TiXmlAttribut ...
- jquery事件手冊
方法 描写叙述 bind() 向匹配元素附加一个或很多其它事件处理器 blur() 触发.或将函数绑定到指定元素的 blur 事件 change() 触发.或将函数绑定到指定元素的 change 事件 ...
- ln: 正在创建指向“asm-arm”的符号链接“asm”: 不支持的操作
原因是不能在windows共享目录编译,将待编译的uboot源码copy到home目录
- linux安装jdk tomcat nginx 以及常用命令
linux: 操作系统,应用服务器上 常用命令: cd 切换命令 cd / cd ~ cd ../../ cd xx ll 展示所有的文件 ll -h 友好的展示 mkdir 创建目录 mkdir 目 ...
- solr单机多实例部署文件锁冲突解决的方法
给出一个有问题的单机多tomcat实例引用同一个solr实例部署图. 这样的部署必定造成一个问题.启动第二个tomcat实例时,一定会报索引目录文件锁已经被占用. 最初的解决的方法是.有多少个tomc ...
- 全局钩子 实例(不使用DLL和使用DLL两种)
大家应该都知道,全局消息钩子要依赖于一个DLL才能够正常工作.于是呢,我也就理所当在地认为全局钩子都要依赖于一个DLL才能正常工作的,我想大部分人肯定和我一样也这么认为的. 但实际上不是这样的.有某些 ...
- unity 3D Mesh网络模型,怎样将Constructer拖入场景??
下图中的将Constructer拖入场景,怎么拖入,不知道... 1.Constructer是一个什么东西?在 下图中没有看到这个名字的,于是乎,我就不知道该怎么办了...
- STM32低功耗模式与烟雾报警器触发信号电路设计
1.STM32的3种低功耗模式 STM32有3种低功耗模式,分别是睡眠模式.停机模式和待机模式. 2.STM32在不同模式下的电流消耗 a.工作模式 消耗电流在27mA至36mA之间. b.睡眠模式 ...
- [RK3288][Android6.0] 调试笔记 --- pmu(rk818)寄存器读写【转】
本文转载自:http://blog.csdn.net/kris_fei/article/details/76919134 Platform: Rockchip OS: Android 6.0 Kern ...