总体思想


1 利用符合压缩感知RIP条件的随机感知矩阵对多尺度图像进行降维
2 然后对降维的特征採用简单的朴素贝叶斯进行分类


算法主要流程


1 在t帧的时候,我们採样得到若干张目标(正样本)和背景(负样本)的图像片,然后对他们进行多尺度变换,再通过一个稀疏測量矩阵对多尺度图像特征进行降维,然后通过降维后的特征(包含目标和背景,属二分类问题)去训练朴素贝叶斯分类器()。

2 在t+1帧的时候,我们在上一帧跟踪到的目标位置的周围採样n个扫描窗体(避免去扫描整幅图像),通过相同的稀疏測量矩阵对其降维,提取特征,然后用第t帧训练好的朴素贝叶斯分类器进行分类,分类分数最大的窗体就觉得是目标窗体。

这样就实现了从t帧到t+1帧的目标跟踪。



Relate Work

Issuse of online tracking algorithms(update models with samples from observations in resent frames)
1 adaptive appearance models are data-dependent, but there does not exist sufficient amount of data for online algorithms at out set
2 drift problems


How To Do

1 生成随机測量矩阵

Achlioptas [16] proved that this type of matrix withs = 2 or 3 satisfies the Johnson-Lindenstrauss lemma. [17]证明,满足JL条件的话即满足CS的restricted isometry property in compressive sensing. 从而我们可以从降维后的v最好的重建x,当中v=Rx,R为随机矩阵


2 得到x向量

w,h是所选目标的宽长。我们用上面一系列不同尺度的矩形来对图像进行类似haar-like的向量生成,一共是wxh个rectangle filters,对每一个像素进行卷积,生成m=(wh)^2个x。尽管m非常大非常大。由于随机測量矩阵十分稀疏,能够降到非常小的n维

3 例如以下做降维处理



4 构建并更新分类器

如果降维后的数据是独立的分布,用下面朴素贝叶斯进行分类(4)


Since Diaconis and Freedman [23] showed that the random projections of high dimensional random vectors are almost always Gaussian。 we assumed p(vi|y=1)andp(vi|y= 0) in the classifier to be Gaussian.


參数採用下式(6)进行递增的更新

   

类似高斯的直观图


5 总体算法为








Discussion

1 由于本文算法是data-independent的,所以不像1-tracker [10] ,compressive sensing tracker [9] 这些生成模型,不须要存储曾经的训练样本;所採用广义的haar-like。不像[9][10]採用holistic templates for sparse representation,本文的特征更为鲁棒
2 PCA和它的变种广泛应用在了生成跟踪模型的方法里[1,6],但这些方法由于用的是holistic representation,对遮挡不鲁棒; 并且不一定能update correctly with new observations。压缩跟踪不存在self-taught learning approaches存在的这些问题,由于利用随机測量矩阵的这个模型是data-independent的;random projection
好于 principal component analysis
3 The tracking-by-detection methods often encounter the inherent ambiguity problems as shown in Figure below. Babenko et al. [8] introduced multiple instance learning schemes to alleviate the
tracking ambiguity problem

4 measurement matrix is data-independent and no noise is introduced by mis-aligned samples
5 Similar representations, e.g., local binary patterns [26] and generalized Haar-like features [8], have been shown to be more effective in handling occlusion.


Experiment

1 用到的评价标准 1 ROI 2 center location error
2 Algorithm combines the merits of generative(features?) and discriminative(bayes?) appearance models to account for scene changes










Real-Time Compressive Tracking 论文笔记的更多相关文章

  1. Correlation Filter in Visual Tracking系列二:Fast Visual Tracking via Dense Spatio-Temporal Context Learning 论文笔记

    原文再续,书接一上回.话说上一次我们讲到了Correlation Filter类 tracker的老祖宗MOSSE,那么接下来就让我们看看如何对其进一步地优化改良.这次要谈的论文是我们国内Zhang ...

  2. 论文笔记之:Visual Tracking with Fully Convolutional Networks

    论文笔记之:Visual Tracking with Fully Convolutional Networks ICCV 2015  CUHK 本文利用 FCN 来做跟踪问题,但开篇就提到并非将其看做 ...

  3. 论文笔记: Dual Deep Network for Visual Tracking

    论文笔记: Dual Deep Network for Visual Tracking  2017-10-17 21:57:08  先来看文章的流程吧 ... 可以看到,作者所总结的三个点在于: 1. ...

  4. 论文笔记之:Action-Decision Networks for Visual Tracking with Deep Reinforcement Learning

    论文笔记之:Action-Decision Networks for Visual Tracking with Deep Reinforcement Learning  2017-06-06  21: ...

  5. Deep Reinforcement Learning for Visual Object Tracking in Videos 论文笔记

    Deep Reinforcement Learning for Visual Object Tracking in Videos 论文笔记 arXiv 摘要:本文提出了一种 DRL 算法进行单目标跟踪 ...

  6. 高速压缩跟踪(fast compressive tracking)(CT)算法分析

    本文为原创,转载请注明出处:http://blog.csdn.net/autocyz/article/details/44490009 Fast Compressive Tracking (高速压缩跟 ...

  7. 压缩跟踪Compressive Tracking

    好了,学习了解了稀疏感知的理论知识后,终于可以来学习<Real-Time Compressive Tracking>这个paper介绍的感知跟踪算法了.自己英文水平有限,理解难免出错,还望 ...

  8. Real-Time Compressive Tracking,实时压缩感知跟踪算法解读

    这是Kaihua Zhang发表在ECCV2012的paper,文中提出了一种基于压缩感知(compressive sensing)的单目标跟踪算法,该算法利用满足压缩感知(compressive s ...

  9. Deep Learning论文笔记之(四)CNN卷积神经网络推导和实现(转)

    Deep Learning论文笔记之(四)CNN卷积神经网络推导和实现 zouxy09@qq.com http://blog.csdn.net/zouxy09          自己平时看了一些论文, ...

随机推荐

  1. python数组中数据位置交换 -- IndexError: list assignment index out of range

    代码: t = [-10,-3,-100,-1000,-239,1] # 交换 -10和1的位置 t[5], t[t[5]-1] = t[t[5]-1], t[5] 报错: IndexError: l ...

  2. composer 设置代理

    在命令行终端中输入以下内容: export https_proxy='192.168.1.133:1080' export http_proxy='192.168.1.133:1080' 此前提是你已 ...

  3. c++_方格填数(最新方法)

      方格填数 如下的10个格子 +--+--+--+ | | | |+--+--+--+--+| | | | |+--+--+--+--+| | | |+--+--+--+ (如果显示有问题,也可以参 ...

  4. 搭建Mysql主从复制

    mysql 主从复制流程图 Server version: 10.0.24-MariaDB-7 Ubuntu 16.04 Master 记录二进制文件 导出数据并记录二进制位置 导入数据,设置二进制位 ...

  5. 《C/C++工程师综合练习卷》

    前言 前天拿这个<C/C++工程师综合练习卷>练习了一下,现将错题以及精题分析总结. 错题分析与总结 2 . 下面的程序可以从1-.n中随机等概率的输出m个不重复的数.这里我们假设n远大于 ...

  6. HDU 1166 排兵布阵(线段树单点更新)

    题意: 给定n个兵营的士兵初始值, 然后有最多40000个操作: 操作一共有两种, 一个是查询给定[a,b]区间兵营的士兵总和. 另一个是增加/减少指定兵营的士兵数目. 输出每次查询的值. 分析: 线 ...

  7. python 数据库操作产生中文乱码的解决办法

    1.执行python mysql数据库查询操作时,产生中文乱码 #!/usr/bin/python # -*- coding: UTF-8 -*- import MySQLdb db = MySQLd ...

  8. 二分图最大权完美匹配KM算法

    KM算法二分图 KM求得二分图与普通二分图的不同之处在于:此二分图的每条边(男生女生)上都附了权值(好感度).然后,求怎样完美匹配使得权值之和最大. 这,不止一般的麻烦啊. 可以通过一个期望值来求. ...

  9. Poj1704:staircase nim【博弈】

    题目大意:有一个无限长的一维的棋盘,棋盘上N个格子放置着棋子.两个人轮流操作,每次操作能选择其中一个棋子向左移动,但不能越过其它棋子或者两枚棋子放在同一格中,最后不能操作的人算输,问先手是否必胜? 思 ...

  10. 事件和委托: 第 6 页 .Net Framework中的委托与事件

    原文发布时间为:2008-11-01 -- 来源于本人的百度文章 [由搬家工具导入] .Net Framework中的委托与事件 尽管上面的范例很好地完成了我们想要完成的工作,但是我们不仅疑惑:为什么 ...