package Spark_MLlib

import org.apache.spark.ml.Pipeline
import org.apache.spark.ml.evaluation.RegressionEvaluator
import org.apache.spark.ml.feature.{IndexToString, StringIndexer, VectorIndexer}
import org.apache.spark.sql.SparkSession
import org.apache.spark.ml.linalg.{Vector, Vectors}
import org.apache.spark.ml.regression.{DecisionTreeRegressionModel, DecisionTreeRegressor} case class data_scheam(features:Vector,label:String)
object 决策树__回归模型 {
val spark=SparkSession.builder().master("local").getOrCreate()
import spark.implicits._
def main(args: Array[String]): Unit = {
val data=spark.sparkContext.textFile("file:///home/soyo/桌面/spark编程测试数据/soyo2.txt")
.map(_.split(",")).map(x=>data_schema(Vectors.dense(x().toDouble,x().toDouble,x().toDouble,x().toDouble),x())).toDF()
val labelIndexer=new StringIndexer().setInputCol("label").setOutputCol("indexedLabel").fit(data)
val featuresIndexer=new VectorIndexer().setInputCol("features").setOutputCol("indexedFeatures").setMaxCategories().fit(data)
val labelCoverter=new IndexToString().setInputCol("prediction").setOutputCol("predictedLabel").setLabels(labelIndexer.labels)
val Array(trainData,testData)=data.randomSplit(Array(0.7,0.3))
//决策树回归模型构造设置
val dtRegressor=new DecisionTreeRegressor().setLabelCol("indexedLabel").setFeaturesCol("indexedFeatures")
//构造机器学习工作流
val pipelineRegressor=new Pipeline().setStages(Array(labelIndexer,featuresIndexer,dtRegressor,labelCoverter))
//训练决策树回归模型
val modelRegressor=pipelineRegressor.fit(trainData)
//进行预测
val prediction=modelRegressor.transform(testData)
prediction.show()
//评估决策树回归模型
val evaluatorRegressor=new RegressionEvaluator().setLabelCol("indexedLabel").setPredictionCol("prediction").setMetricName("rmse") //setMetricName:设置决定你的度量标准是均方根误差还是均方误差等,值可以为:rmse,mse,r2,mae
val Root_Mean_Squared_Error=evaluatorRegressor.evaluate(prediction)
println("均方根误差为: "+Root_Mean_Squared_Error) val treeModelRegressor=modelRegressor.stages().asInstanceOf[DecisionTreeRegressionModel]
val schema_decisionTree=treeModelRegressor.toDebugString
println("决策树分类模型的结构为: "+schema_decisionTree)
}
}
Spark 源码:关于setMetricName("")
@Since("2.0.0")
override def evaluate(dataset: Dataset[_]): Double = {
val schema = dataset.schema
SchemaUtils.checkColumnTypes(schema, $(predictionCol), Seq(DoubleType, FloatType))
SchemaUtils.checkNumericType(schema, $(labelCol)) val predictionAndLabels = dataset
.select(col($(predictionCol)).cast(DoubleType), col($(labelCol)).cast(DoubleType))
.rdd
.map { case Row(prediction: Double, label: Double) => (prediction, label) }
val metrics = new RegressionMetrics(predictionAndLabels)
val metric = $(metricName) match {
case "rmse" => metrics.rootMeanSquaredError
case "mse" => metrics.meanSquaredError
case "r2" => metrics.r2
case "mae" => metrics.meanAbsoluteError
}
metric
}

结果:

+-----------------+------+------------+-----------------+----------+--------------+
|         features| label|indexedLabel|  indexedFeatures|prediction|predictedLabel|
+-----------------+------+------------+-----------------+----------+--------------+
|[4.6,3.1,1.5,0.2]|hadoop|         1.0|[4.6,3.1,1.5,0.2]|       1.0|        hadoop|
|[4.6,3.4,1.4,0.3]|hadoop|         1.0|[4.6,3.4,1.4,0.3]|       1.0|        hadoop|
|[4.7,3.2,1.3,0.2]|hadoop|         1.0|[4.7,3.2,1.3,0.2]|       1.0|        hadoop|
|[4.8,3.0,1.4,0.1]|hadoop|         1.0|[4.8,3.0,1.4,0.1]|       1.0|        hadoop|
|[5.1,3.3,1.7,0.5]|hadoop|         1.0|[5.1,3.3,1.7,0.5]|       1.0|        hadoop|
|[5.1,3.7,1.5,0.4]|hadoop|         1.0|[5.1,3.7,1.5,0.4]|       1.0|        hadoop|
|[5.4,3.9,1.3,0.4]|hadoop|         1.0|[5.4,3.9,1.3,0.4]|       1.0|        hadoop|
|[5.5,2.3,4.0,1.3]| spark|         0.0|[5.5,2.3,4.0,1.3]|       0.0|         spark|
|[5.5,3.5,1.3,0.2]|hadoop|         1.0|[5.5,3.5,1.3,0.2]|       1.0|        hadoop|
|[5.6,2.7,4.2,1.3]| spark|         0.0|[5.6,2.7,4.2,1.3]|       0.0|         spark|
|[5.6,3.0,4.1,1.3]| spark|         0.0|[5.6,3.0,4.1,1.3]|       0.0|         spark|
|[5.6,3.0,4.5,1.5]| spark|         0.0|[5.6,3.0,4.5,1.5]|       0.0|         spark|
|[5.7,2.6,3.5,1.0]| spark|         0.0|[5.7,2.6,3.5,1.0]|       0.0|         spark|
|[5.7,4.4,1.5,0.4]|hadoop|         1.0|[5.7,4.4,1.5,0.4]|       1.0|        hadoop|
|[5.8,2.7,3.9,1.2]| spark|         0.0|[5.8,2.7,3.9,1.2]|       0.0|         spark|
|[5.8,2.7,4.1,1.0]| spark|         0.0|[5.8,2.7,4.1,1.0]|       0.0|         spark|
|[5.8,2.8,5.1,2.4]| Scala|         2.0|[5.8,2.8,5.1,2.4]|       2.0|         Scala|
|[5.8,4.0,1.2,0.2]|hadoop|         1.0|[5.8,4.0,1.2,0.2]|       1.0|        hadoop|
|[5.9,3.0,4.2,1.5]| spark|         0.0|[5.9,3.0,4.2,1.5]|       0.0|         spark|
|[5.9,3.0,5.1,1.8]| Scala|         2.0|[5.9,3.0,5.1,1.8]|       2.0|         Scala|
|[5.9,3.2,4.8,1.8]| spark|         0.0|[5.9,3.2,4.8,1.8]|       2.0|         Scala|
|[6.1,2.6,5.6,1.4]| Scala|         2.0|[6.1,2.6,5.6,1.4]|       2.0|         Scala|
|[6.1,2.8,4.0,1.3]| spark|         0.0|[6.1,2.8,4.0,1.3]|       0.0|         spark|
|[6.3,2.9,5.6,1.8]| Scala|         2.0|[6.3,2.9,5.6,1.8]|       2.0|         Scala|
|[6.3,3.4,5.6,2.4]| Scala|         2.0|[6.3,3.4,5.6,2.4]|       2.0|         Scala|
|[6.4,2.7,5.3,1.9]| Scala|         2.0|[6.4,2.7,5.3,1.9]|       2.0|         Scala|
|[6.4,3.1,5.5,1.8]| Scala|         2.0|[6.4,3.1,5.5,1.8]|       2.0|         Scala|
|[6.4,3.2,4.5,1.5]| spark|         0.0|[6.4,3.2,4.5,1.5]|       0.0|         spark|
|[6.5,2.8,4.6,1.5]| spark|         0.0|[6.5,2.8,4.6,1.5]|       0.0|         spark|
|[6.5,3.0,5.5,1.8]| Scala|         2.0|[6.5,3.0,5.5,1.8]|       2.0|         Scala|
|[6.7,3.0,5.2,2.3]| Scala|         2.0|[6.7,3.0,5.2,2.3]|       2.0|         Scala|
|[6.7,3.1,4.7,1.5]| spark|         0.0|[6.7,3.1,4.7,1.5]|       0.0|         spark|
|[6.8,3.0,5.5,2.1]| Scala|         2.0|[6.8,3.0,5.5,2.1]|       2.0|         Scala|
|[6.9,3.1,5.4,2.1]| Scala|         2.0|[6.9,3.1,5.4,2.1]|       2.0|         Scala|
|[7.0,3.2,4.7,1.4]| spark|         0.0|[7.0,3.2,4.7,1.4]|       0.0|         spark|
|[7.1,3.0,5.9,2.1]| Scala|         2.0|[7.1,3.0,5.9,2.1]|       2.0|         Scala|
|[7.2,3.0,5.8,1.6]| Scala|         2.0|[7.2,3.0,5.8,1.6]|       0.0|         spark|
|[7.2,3.2,6.0,1.8]| Scala|         2.0|[7.2,3.2,6.0,1.8]|       2.0|         Scala|
|[7.2,3.6,6.1,2.5]| Scala|         2.0|[7.2,3.6,6.1,2.5]|       2.0|         Scala|
|[7.4,2.8,6.1,1.9]| Scala|         2.0|[7.4,2.8,6.1,1.9]|       2.0|         Scala|
|[7.7,2.6,6.9,2.3]| Scala|         2.0|[7.7,2.6,6.9,2.3]|       2.0|         Scala|
|[7.7,2.8,6.7,2.0]| Scala|         2.0|[7.7,2.8,6.7,2.0]|       2.0|         Scala|
+-----------------+------+------------+-----------------+----------+--------------+

均方根误差为: 0.43643578047198484
决策树分类模型的结构为: DecisionTreeRegressionModel (uid=dtr_6015411b1a3d) of depth 4 with 11 nodes
  If (feature 3 <= 1.7)
   If (feature 2 <= 1.9)
    Predict: 1.0
   Else (feature 2 > 1.9)
    If (feature 2 <= 4.9)
     If (feature 3 <= 1.6)
      Predict: 0.0
     Else (feature 3 > 1.6)
      Predict: 2.0
    Else (feature 2 > 4.9)
     If (feature 3 <= 1.5)
      Predict: 2.0
     Else (feature 3 > 1.5)
      Predict: 0.0
  Else (feature 3 > 1.7)
   Predict: 2.0

Spark 决策树--回归模型的更多相关文章

  1. Spark 决策树--分类模型

    package Spark_MLlib import org.apache.spark.ml.Pipeline import org.apache.spark.ml.classification.{D ...

  2. Spark机器学习5·回归模型(pyspark)

    分类模型的预测目标是:类别编号 回归模型的预测目标是:实数变量 回归模型种类 线性模型 最小二乘回归模型 应用L2正则化时--岭回归(ridge regression) 应用L1正则化时--LASSO ...

  3. 吴裕雄 python 机器学习——集成学习梯度提升决策树GradientBoostingRegressor回归模型

    import numpy as np import matplotlib.pyplot as plt from sklearn import datasets,ensemble from sklear ...

  4. weka实际操作--构建分类、回归模型

    weka提供了几种处理数据的方式,其中分类和回归是平时用到最多的,也是非常容易理解的,分类就是在已有的数据基础上学习出一个分类函数或者构造出一个分类模型.这个函数或模型能够把数据集中地映射到某个给定的 ...

  5. Spark MLlib回归算法------线性回归、逻辑回归、SVM和ALS

    Spark MLlib回归算法------线性回归.逻辑回归.SVM和ALS 1.线性回归: (1)模型的建立: 回归正则化方法(Lasso,Ridge和ElasticNet)在高维和数据集变量之间多 ...

  6. 如何在R语言中使用Logistic回归模型

    在日常学习或工作中经常会使用线性回归模型对某一事物进行预测,例如预测房价.身高.GDP.学生成绩等,发现这些被预测的变量都属于连续型变量.然而有些情况下,被预测变量可能是二元变量,即成功或失败.流失或 ...

  7. SPSS数据分析—Poisson回归模型

    在对数线性模型中,我们假设单元格频数分布为多项式分布,但是还有一类分类变量分布也是经常用到的,就是Poisson分布. Poisson分布是某件事发生次数的概率分布,用于描述单位时间.单位面积.单位空 ...

  8. SPSS数据分析—配对Logistic回归模型

    Lofistic回归模型也可以用于配对资料,但是其分析方法和操作方法均与之前介绍的不同,具体表现 在以下几个方面1.每个配对组共有同一个回归参数,也就是说协变量在不同配对组中的作用相同2.常数项随着配 ...

  9. SPSS数据分析—多分类Logistic回归模型

    前面我们说过二分类Logistic回归模型,但分类变量并不只是二分类一种,还有多分类,本次我们介绍当因变量为多分类时的Logistic回归模型. 多分类Logistic回归模型又分为有序多分类Logi ...

随机推荐

  1. 修改Python的镜像源

    Mac OS下修改Python的镜像源 步骤: 切换到家目录 创建目录 .pip 并切换到该目录 创建 pip.conf 文件并写入配置信息 [global] index-url = https:// ...

  2. python网络编程01

    1.什么是C/S架构? 客户端/服务器架构.实现服务端软件与客户端软件基于网络的通信. 2.互联网协议是什么?分别介绍五层协议中每一层的功能? 互联网协议是指用于互联网通信的规范.分为:osi七层.t ...

  3. python之抽象 2014-4-6

    #抽象 8.40am-1.懒惰即美德2.抽象和结构3.创建函数 内建的callable 函数可以判定函数是否可以调用 >>> import math >>> x=1 ...

  4. STM32F407 新建基于固件库的项目模板

    1.新建文件夹如图: 2.新建项目在USER文件夹中,选cpu如图: 若再弹出窗口, 直接点cancel 3.删了这俩文件夹: 4.复制文件到fwlib: src 存放的是固件库的.c 文件, inc ...

  5. [K/3Cloud] 单据转换插件执行顺序

    1.下推事件及顺序 //初始化变量 OnInitVariable(InitVariableEventArgs e) //解析字段映射关系,并构建查询参数.这里可以加入你想要的额外的字段 OnQuery ...

  6. ELK pipeline

    https://www.felayman.com/articles/2017/11/24/1511527532643.html?utm_medium=hao.caibaojian.com&ut ...

  7. UVA 437_The Tower of Babylon

    题意: 一堆石头,给定长宽高,每种石头均可以使用无数次,问这堆石头可以叠放的最高高度,要求下面的石头的长和宽分别严格大于上面石头的长和宽. 分析: 采用DAG最长路算法,由于长宽较大,不能直接用于表示 ...

  8. JSP的生命周期

    以下内容引用自http://wiki.jikexueyuan.com/project/jsp/life-cycle.html: JSP生命周期可以被定义为从创建到销毁的整个过程,这类似于一个Servl ...

  9. react的类型检查PropTypes自React v15.5起已弃用,请使用prop-types

    最近使用React的类型检查PropTypes时,遇到错误:TypeError: Cannot read property 'array' of undefined 看了下自己的React版本:    ...

  10. Dell PowerEdge RAID Controller (PERC) | Dell

      Dell PowerEdge RAID Controller (PERC)             The Dell™ PERC (PowerEdge™ RAID Controller) fami ...