题目链接:https://cn.vjudge.net/problem/CodeForces-894C

In a dream Marco met an elderly man with a pair of black glasses. The man told him the key to immortality and then disappeared with the wind of time.

When he woke up, he only remembered that the key was a sequence of positive integers of some length n, but forgot the exact sequence. Let the elements of the sequence be a1, a2, ..., an. He remembered that he calculated gcd(ai, ai + 1, ..., aj) for every 1 ≤ i ≤ j ≤ n and put it into a set Sgcd here means the greatest common divisor.

Note that even if a number is put into the set S twice or more, it only appears once in the set.

Now Marco gives you the set S and asks you to help him figure out the initial sequence. If there are many solutions, print any of them. It is also possible that there are no sequences that produce the set S, in this case print -1.

Input

The first line contains a single integer m (1 ≤ m ≤ 1000) — the size of the set S.

The second line contains m integers s1, s2, ..., sm (1 ≤ si ≤ 106) — the elements of the set S. It's guaranteed that the elements of the set are given in strictly increasing order, that means s1 < s2 < ... < sm.

Output

If there is no solution, print a single line containing -1.

Otherwise, in the first line print a single integer n denoting the length of the sequence, n should not exceed 4000.

In the second line print n integers a1, a2, ..., an (1 ≤ ai ≤ 106) — the sequence.

We can show that if a solution exists, then there is a solution with n not exceeding 4000 and ai not exceeding 106.

If there are multiple solutions, print any of them.

Example

Input
4
2 4 6 12
Output
3
4 6 12
Input
2
2 3
Output
-1

Note

In the first example 2 = gcd(4, 6), the other elements from the set appear in the sequence, and we can show that there are no values different from 2, 4, 6 and 12 among gcd(ai, ai + 1, ..., aj) for every 1 ≤ i ≤ j ≤ n.

题意:

有一个数组a[1~n],对他们所有的1<=i<=j<=n求 gcd( a[i] ~ a[j] ),得到集合S;

该集合S满足:元素不重复、集合内元素满足严格单增;

现在给你一个S,让你求出a;

题解:

gcd( a[1] ~ a[n] )显然是所有gcd( a[i] ~ a[j] )里最小的且满足 gcd( a[1] ~ a[n] ) | ∀gcd( a[i] ~ a[j] ),所以在集合S中S[1]应该满足 S[1] | S[i] ;

然后另外一个性质是gcd(num) = num,所以所有的a[i]都应该出现在S里;

我们当然不能像题目里样例那样求a[1~n],这样有点难,考虑另外的方法;

考虑让每个gcd(a[i])=S[i],然后让gcd(a[i]~a[j])=S[1](i<j),怎么操作呢,在S[2]~S[m]之间都插入S[1]即可。

AC代码:

#include <bits/stdc++.h>
using namespace std; int m,S[];
int main()
{
cin>>m;
for(int i=;i<=m;i++) scanf("%d",&S[i]); bool ok=;
for(int i=;i<=m;i++)
{
if(S[i]%S[]!=)
{
ok=;
break;
}
}
if(!ok)
{
printf("-1\n");
return ;
} printf("%d\n", m + ( (m-==)?():(m-) ) );
printf("%d ",S[]);
for(int i=;i<=m;i++)
{
if(i!=) printf(" %d ",S[]);
printf("%d",S[i]);
}
cout<<endl;
}

codeforces 894C - Marco and GCD Sequence - [有关gcd数学题]的更多相关文章

  1. codeforces #447 894A QAQ 894B Ralph And His Magic Field 894C Marco and GCD Sequence

    A.QAQ 题目大意:从给定的字符串中找出QAQ的个数,三个字母的位置可以不连续 思路:暴力求解,先找到A的位置,往前扫,往后扫寻找Q的个数q1,q2,然 后相乘得到q1*q2,这就是这个A能够找到的 ...

  2. Codeforces 894.C Marco and GCD Sequence

    C. Marco and GCD Sequence time limit per test 1 second memory limit per test 256 megabytes input sta ...

  3. Codeforces Round #447 (Div. 2) C. Marco and GCD Sequence【构造/GCD】

    C. Marco and GCD Sequence time limit per test 1 second memory limit per test 256 megabytes input sta ...

  4. CF894C Marco and GCD Sequence

    题目链接:http://codeforces.com/contest/894/problem/C 题目大意: 按照严格递增的顺序给出 \(m\) 个数作为公因数集,请你构造出一个数列,对于数列中的任意 ...

  5. Codeforces Round #554 (Div. 2)-C(gcd应用)

    题目链接:https://codeforces.com/contest/1152/problem/C 题意:给定a,b(<1e9).求使得lcm(a+k,b+k)最小的k,若有多个k,求最小的k ...

  6. Codeforces Round #651 (Div. 2) A. Maximum GCD(数论)

    题目链接:https://codeforces.com/contest/1370/problem/A 题意 有 $n$ 个数大小分别为 $1$ 到 $n$,找出两个数间最大的 $gcd$ . 题解 若 ...

  7. Codeforces Round #554 (Div. 2) C. Neko does Maths (数论 GCD(a,b) = GCD(a,b-a))

    传送门 •题意 给出两个正整数 a,b: 求解 k ,使得 LCM(a+k,b+k) 最小,如果有多个 k 使得 LCM() 最小,输出最小的k: •思路 时隔很久,又重新做这个题 温故果然可以知新❤ ...

  8. Codeforces Round #691 (Div. 2) C. Row GCD (数学)

    题意:给你两个数组\(a\)和\(b\),对于\(j=1,...,m\),找出\(a_1+b_j,...,a_n+b_j\)的\(gcd\). 题解:我们很容易的得出\(gcd\)的一个性质:\(gc ...

  9. 欧几里得算法:从证明等式gcd(m, n) = gcd(n, m mod n)对每一对正整数m, n都成立说开去

    写诗或者写程序的时候,我们经常要跟欧几里得算法打交道.然而有没要考虑到为什么欧几里得算法是有效且高效的,一些偏激(好吧,请允许我用这个带有浓重个人情感色彩的词汇)的计算机科学家认为,除非程序的正确性在 ...

随机推荐

  1. MySQL------报错Access denied for user 'root'@'localhost' (using password:NO)解决方法

    报错:Access denied for user 'root'@'localhost' (using password:NO) 原因:没有给用户“root'@'localhost”赋予数据库权限 解 ...

  2. lua 对表的简单序列化与反序列化

    参考文档:http://blog.csdn.net/xiaodan007/article/details/7096718 function sz_T2S(_t) local szRet = " ...

  3. Extended VM Disk In VirtualBox or VMware (虚拟机磁盘扩容)

    First, Clean VM all snapshot, and poweroff your VM. vmdk: vmware-vdiskmanager -x 16GB myDisk.vmdk vd ...

  4. django学习笔记:AdminSite界面配置

    (一)重定义字段顺序: 修改对应应用目录下的admin.py class PollAdmin(admin.ModelAdmin):     fields = ['pub_date', 'questio ...

  5. 【译】Apache Flink Kafka consumer

    Flink提供了Kafka connector用于消费/生产Apache Kafka topic的数据.Flink的Kafka consumer集成了checkpoint机制以提供精确一次的处理语义. ...

  6. (转载)Java反射机制

    Java反射机制是Java语言被视为准动态语言的关键性质.Java反射机制的核心就是允许在运行时通过Java Reflection APIs来取得已知名字的class类的相关信息,动态地生成此类,并调 ...

  7. linux系统环境搭建

    一.安装jdk 参考帖子 用yum安装JDK(CentOS) 1.查看yum库中都有哪些jdk版本 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 [r ...

  8. OpenCV——轮廓面积及长度计算

    计算轮廓面积: double contourArea(InputArray contour, bool oriented=false ) InputArray contour:输入的点,一般是图像的轮 ...

  9. java基础---->数组的基础使用(二)

    这里对List(jdk 1.7)列表里面的一些方法做一些简单的分析,以避免有些函数的误用.手写瑶笺被雨淋,模糊点画费探寻,纵然灭却书中字,难灭情人一片心. List中注意的方法 一.Arrays.as ...

  10. jQuery事件处理(七)

    1.自定义事件(用户手动trigger的一般都是自定义事件) trigger: function( event, data, elem, onlyHandlers ) { var i, cur, tm ...