codeforces 894C - Marco and GCD Sequence - [有关gcd数学题]
题目链接:https://cn.vjudge.net/problem/CodeForces-894C
In a dream Marco met an elderly man with a pair of black glasses. The man told him the key to immortality and then disappeared with the wind of time.
When he woke up, he only remembered that the key was a sequence of positive integers of some length n, but forgot the exact sequence. Let the elements of the sequence be a1, a2, ..., an. He remembered that he calculated gcd(ai, ai + 1, ..., aj) for every 1 ≤ i ≤ j ≤ n and put it into a set S. gcd here means the greatest common divisor.
Note that even if a number is put into the set S twice or more, it only appears once in the set.
Now Marco gives you the set S and asks you to help him figure out the initial sequence. If there are many solutions, print any of them. It is also possible that there are no sequences that produce the set S, in this case print -1.
Input
The first line contains a single integer m (1 ≤ m ≤ 1000) — the size of the set S.
The second line contains m integers s1, s2, ..., sm (1 ≤ si ≤ 106) — the elements of the set S. It's guaranteed that the elements of the set are given in strictly increasing order, that means s1 < s2 < ... < sm.
Output
If there is no solution, print a single line containing -1.
Otherwise, in the first line print a single integer n denoting the length of the sequence, n should not exceed 4000.
In the second line print n integers a1, a2, ..., an (1 ≤ ai ≤ 106) — the sequence.
We can show that if a solution exists, then there is a solution with n not exceeding 4000 and ai not exceeding 106.
If there are multiple solutions, print any of them.
Example
4
2 4 6 12
3
4 6 12
2
2 3
-1
Note
In the first example 2 = gcd(4, 6), the other elements from the set appear in the sequence, and we can show that there are no values different from 2, 4, 6 and 12 among gcd(ai, ai + 1, ..., aj) for every 1 ≤ i ≤ j ≤ n.
题意:
有一个数组a[1~n],对他们所有的1<=i<=j<=n求 gcd( a[i] ~ a[j] ),得到集合S;
该集合S满足:元素不重复、集合内元素满足严格单增;
现在给你一个S,让你求出a;
题解:
gcd( a[1] ~ a[n] )显然是所有gcd( a[i] ~ a[j] )里最小的且满足 gcd( a[1] ~ a[n] ) | ∀gcd( a[i] ~ a[j] ),所以在集合S中S[1]应该满足 S[1] | S[i] ;
然后另外一个性质是gcd(num) = num,所以所有的a[i]都应该出现在S里;
我们当然不能像题目里样例那样求a[1~n],这样有点难,考虑另外的方法;
考虑让每个gcd(a[i])=S[i],然后让gcd(a[i]~a[j])=S[1](i<j),怎么操作呢,在S[2]~S[m]之间都插入S[1]即可。
AC代码:
#include <bits/stdc++.h>
using namespace std; int m,S[];
int main()
{
cin>>m;
for(int i=;i<=m;i++) scanf("%d",&S[i]); bool ok=;
for(int i=;i<=m;i++)
{
if(S[i]%S[]!=)
{
ok=;
break;
}
}
if(!ok)
{
printf("-1\n");
return ;
} printf("%d\n", m + ( (m-==)?():(m-) ) );
printf("%d ",S[]);
for(int i=;i<=m;i++)
{
if(i!=) printf(" %d ",S[]);
printf("%d",S[i]);
}
cout<<endl;
}
codeforces 894C - Marco and GCD Sequence - [有关gcd数学题]的更多相关文章
- codeforces #447 894A QAQ 894B Ralph And His Magic Field 894C Marco and GCD Sequence
A.QAQ 题目大意:从给定的字符串中找出QAQ的个数,三个字母的位置可以不连续 思路:暴力求解,先找到A的位置,往前扫,往后扫寻找Q的个数q1,q2,然 后相乘得到q1*q2,这就是这个A能够找到的 ...
- Codeforces 894.C Marco and GCD Sequence
C. Marco and GCD Sequence time limit per test 1 second memory limit per test 256 megabytes input sta ...
- Codeforces Round #447 (Div. 2) C. Marco and GCD Sequence【构造/GCD】
C. Marco and GCD Sequence time limit per test 1 second memory limit per test 256 megabytes input sta ...
- CF894C Marco and GCD Sequence
题目链接:http://codeforces.com/contest/894/problem/C 题目大意: 按照严格递增的顺序给出 \(m\) 个数作为公因数集,请你构造出一个数列,对于数列中的任意 ...
- Codeforces Round #554 (Div. 2)-C(gcd应用)
题目链接:https://codeforces.com/contest/1152/problem/C 题意:给定a,b(<1e9).求使得lcm(a+k,b+k)最小的k,若有多个k,求最小的k ...
- Codeforces Round #651 (Div. 2) A. Maximum GCD(数论)
题目链接:https://codeforces.com/contest/1370/problem/A 题意 有 $n$ 个数大小分别为 $1$ 到 $n$,找出两个数间最大的 $gcd$ . 题解 若 ...
- Codeforces Round #554 (Div. 2) C. Neko does Maths (数论 GCD(a,b) = GCD(a,b-a))
传送门 •题意 给出两个正整数 a,b: 求解 k ,使得 LCM(a+k,b+k) 最小,如果有多个 k 使得 LCM() 最小,输出最小的k: •思路 时隔很久,又重新做这个题 温故果然可以知新❤ ...
- Codeforces Round #691 (Div. 2) C. Row GCD (数学)
题意:给你两个数组\(a\)和\(b\),对于\(j=1,...,m\),找出\(a_1+b_j,...,a_n+b_j\)的\(gcd\). 题解:我们很容易的得出\(gcd\)的一个性质:\(gc ...
- 欧几里得算法:从证明等式gcd(m, n) = gcd(n, m mod n)对每一对正整数m, n都成立说开去
写诗或者写程序的时候,我们经常要跟欧几里得算法打交道.然而有没要考虑到为什么欧几里得算法是有效且高效的,一些偏激(好吧,请允许我用这个带有浓重个人情感色彩的词汇)的计算机科学家认为,除非程序的正确性在 ...
随机推荐
- 不用数据线连接到Android手机进行调试
这两天USB线丢了,老是找同事借也不方便,于是就网上找各种方法,这里总结个最简单的,当然你的手机需要root: 1 要打开WIFI,手机要和电脑在同一局域网内,这个你可以使用你的开发机共享wifi即可 ...
- 8 -- 深入使用Spring -- 8...1 Spring提供的DAO支持
8.8.1 Spring提供的DAO支持. DAO模式是一种标准的Java EE设计模式,DAO模式的核心思想是,所有的数据库访问都通过DAO组件完成,DAO组件封装了数据库的增.删.查.改等原子操作 ...
- .NET Framework 4.0源代码
原文出处:http://blogs.microsoft.co.il/blogs/arik/archive/2010/07/12/step-into-net-framework-4-0-source-c ...
- [转]如何配置和使用Tomcat访问日志
配置位置在log下的server.xml,(tomcat容器) <Engine defaultHost="localhost" name="Catalina&quo ...
- MySQL实现树状所有子节点查询的方法
本文实例讲述了MySQL实现树状所有子节点查询的方法.分享给大家供大家参考,具体如下: 在Oracle 中我们知道有一个 Hierarchical Queries 通过CONNECT BY 我们可以方 ...
- Window日志分析
0X00 简介 0x01 基本设置 A.Windows审核策略设置 前提:开启审核策略,若日后系统出现故障.安全事故则可以查看系统的日志文件,排除故障,追查入侵者的信息等. 打开设置窗口 Window ...
- Selenium 基本用法
如下,使用 Selenium 打开淘宝首页并获取页面源代码: from selenium import webdriver browser = webdriver.Chrome() # 声明一个浏览器 ...
- 2018.8.23几日重新编译OSG+OE+Qt遇到的问题
Qt安装多个版本的时候,注意屏蔽掉不使用的Qt,例如OE中的CMakeLists.txt中的# FIND_PACKAGE(Qt4) 使用以前编译好的libcurl.dll现在出现"无法定位序 ...
- 新唐ISP操作步骤(转)
1,电脑上装上“NuMicro_ICP_Programming_Tool_v1.18.5320.zip”:2,把目标板通过SWD口的NU-LINK连接到电脑的USB口上:3,打开桌面的“NuMicro ...
- rgba和opacity区别
首先来看rgba: R:红色值.正整数 | 百分数G:绿色值.正整数 | 百分数B:蓝色值.正整数 | 百分数A:Alpha透明度.取值0~1之间. 再看opacity: 后面的取值为从 0.0 (完 ...