题目链接:https://cn.vjudge.net/problem/CodeForces-894C

In a dream Marco met an elderly man with a pair of black glasses. The man told him the key to immortality and then disappeared with the wind of time.

When he woke up, he only remembered that the key was a sequence of positive integers of some length n, but forgot the exact sequence. Let the elements of the sequence be a1, a2, ..., an. He remembered that he calculated gcd(ai, ai + 1, ..., aj) for every 1 ≤ i ≤ j ≤ n and put it into a set Sgcd here means the greatest common divisor.

Note that even if a number is put into the set S twice or more, it only appears once in the set.

Now Marco gives you the set S and asks you to help him figure out the initial sequence. If there are many solutions, print any of them. It is also possible that there are no sequences that produce the set S, in this case print -1.

Input

The first line contains a single integer m (1 ≤ m ≤ 1000) — the size of the set S.

The second line contains m integers s1, s2, ..., sm (1 ≤ si ≤ 106) — the elements of the set S. It's guaranteed that the elements of the set are given in strictly increasing order, that means s1 < s2 < ... < sm.

Output

If there is no solution, print a single line containing -1.

Otherwise, in the first line print a single integer n denoting the length of the sequence, n should not exceed 4000.

In the second line print n integers a1, a2, ..., an (1 ≤ ai ≤ 106) — the sequence.

We can show that if a solution exists, then there is a solution with n not exceeding 4000 and ai not exceeding 106.

If there are multiple solutions, print any of them.

Example

Input
4
2 4 6 12
Output
3
4 6 12
Input
2
2 3
Output
-1

Note

In the first example 2 = gcd(4, 6), the other elements from the set appear in the sequence, and we can show that there are no values different from 2, 4, 6 and 12 among gcd(ai, ai + 1, ..., aj) for every 1 ≤ i ≤ j ≤ n.

题意:

有一个数组a[1~n],对他们所有的1<=i<=j<=n求 gcd( a[i] ~ a[j] ),得到集合S;

该集合S满足:元素不重复、集合内元素满足严格单增;

现在给你一个S,让你求出a;

题解:

gcd( a[1] ~ a[n] )显然是所有gcd( a[i] ~ a[j] )里最小的且满足 gcd( a[1] ~ a[n] ) | ∀gcd( a[i] ~ a[j] ),所以在集合S中S[1]应该满足 S[1] | S[i] ;

然后另外一个性质是gcd(num) = num,所以所有的a[i]都应该出现在S里;

我们当然不能像题目里样例那样求a[1~n],这样有点难,考虑另外的方法;

考虑让每个gcd(a[i])=S[i],然后让gcd(a[i]~a[j])=S[1](i<j),怎么操作呢,在S[2]~S[m]之间都插入S[1]即可。

AC代码:

#include <bits/stdc++.h>
using namespace std; int m,S[];
int main()
{
cin>>m;
for(int i=;i<=m;i++) scanf("%d",&S[i]); bool ok=;
for(int i=;i<=m;i++)
{
if(S[i]%S[]!=)
{
ok=;
break;
}
}
if(!ok)
{
printf("-1\n");
return ;
} printf("%d\n", m + ( (m-==)?():(m-) ) );
printf("%d ",S[]);
for(int i=;i<=m;i++)
{
if(i!=) printf(" %d ",S[]);
printf("%d",S[i]);
}
cout<<endl;
}

codeforces 894C - Marco and GCD Sequence - [有关gcd数学题]的更多相关文章

  1. codeforces #447 894A QAQ 894B Ralph And His Magic Field 894C Marco and GCD Sequence

    A.QAQ 题目大意:从给定的字符串中找出QAQ的个数,三个字母的位置可以不连续 思路:暴力求解,先找到A的位置,往前扫,往后扫寻找Q的个数q1,q2,然 后相乘得到q1*q2,这就是这个A能够找到的 ...

  2. Codeforces 894.C Marco and GCD Sequence

    C. Marco and GCD Sequence time limit per test 1 second memory limit per test 256 megabytes input sta ...

  3. Codeforces Round #447 (Div. 2) C. Marco and GCD Sequence【构造/GCD】

    C. Marco and GCD Sequence time limit per test 1 second memory limit per test 256 megabytes input sta ...

  4. CF894C Marco and GCD Sequence

    题目链接:http://codeforces.com/contest/894/problem/C 题目大意: 按照严格递增的顺序给出 \(m\) 个数作为公因数集,请你构造出一个数列,对于数列中的任意 ...

  5. Codeforces Round #554 (Div. 2)-C(gcd应用)

    题目链接:https://codeforces.com/contest/1152/problem/C 题意:给定a,b(<1e9).求使得lcm(a+k,b+k)最小的k,若有多个k,求最小的k ...

  6. Codeforces Round #651 (Div. 2) A. Maximum GCD(数论)

    题目链接:https://codeforces.com/contest/1370/problem/A 题意 有 $n$ 个数大小分别为 $1$ 到 $n$,找出两个数间最大的 $gcd$ . 题解 若 ...

  7. Codeforces Round #554 (Div. 2) C. Neko does Maths (数论 GCD(a,b) = GCD(a,b-a))

    传送门 •题意 给出两个正整数 a,b: 求解 k ,使得 LCM(a+k,b+k) 最小,如果有多个 k 使得 LCM() 最小,输出最小的k: •思路 时隔很久,又重新做这个题 温故果然可以知新❤ ...

  8. Codeforces Round #691 (Div. 2) C. Row GCD (数学)

    题意:给你两个数组\(a\)和\(b\),对于\(j=1,...,m\),找出\(a_1+b_j,...,a_n+b_j\)的\(gcd\). 题解:我们很容易的得出\(gcd\)的一个性质:\(gc ...

  9. 欧几里得算法:从证明等式gcd(m, n) = gcd(n, m mod n)对每一对正整数m, n都成立说开去

    写诗或者写程序的时候,我们经常要跟欧几里得算法打交道.然而有没要考虑到为什么欧几里得算法是有效且高效的,一些偏激(好吧,请允许我用这个带有浓重个人情感色彩的词汇)的计算机科学家认为,除非程序的正确性在 ...

随机推荐

  1. Extjs定义的Fckeditor控件

    Ext.namespace('CRM.Panels'); //Ext.BoxComponent 这里继承是参考的Ext.form.Field CRM.Panels.Fckeditor = Ext.ex ...

  2. iOS 图片剪切和压缩的几个方法

    // 图片剪切 - (UIImage*)clipImageWithImage:(UIImage*)image inRect:(CGRect)rect {    CGImageRef imageRef ...

  3. Robot Framework配置发送邮件功能

    请参考:http://www.robotframework.net/?/article/118

  4. 使用tinyproxy搭建http代理

    一.前言   二.搭建环境 * Linux laptop 2.6.32-45-generic #100-Ubuntu SMP Wed Nov 14 10:41:11 UTC 2012 i686 GNU ...

  5. Nginx 访问日志

    配置访问日志: [root@localhost ~]$ cat /usr/local/nginx/conf/nginx.conf http { log_format main '$remote_add ...

  6. [SublimeText] Sublime Text 2 在 Ubuntu 上安装指南

    1. 下载Sublime Text 2 在官网下载对应系统位数的版本,从压缩包中提取出源代码,解压后文件夹中的"sublime_text"双击即可直接运行. 2. 建立快捷链接 将 ...

  7. ie11中报SCRIPT1003: 缺少 ':'的错误?

    兼容性?IE的兼容性…… 由于“叶叶综合征发作”,导致有段时间都在自我否定中,故而引发一系列的不美好.幸好,自己还有超强的恢复能力,一切都在往好的方向发展吧. 直接进入 “可怕的IE兼容”主题: 第一 ...

  8. VK Cup 2016 - Qualification Round 2 B. Making Genome in Berland

    今天在codeforces上面做到一道题:http://codeforces.com/contest/638/problem/B 题目大意是:给定n个字符串,找到最短的字符串S使得n个字符串都是这个字 ...

  9. 如何将一个项目打成war包?

    如何将一个项目打成war包?进入该项目所在目录jar  -cvf  myProjec.war  myProject

  10. 游戏服务器学习笔记 5———— twisted Perspective Broker 透明代理

    实际上这章压根不需要我来说,twisted官网的Doc里面有专门介绍的章节.写的非常详细. http://twistedmatrix.com/documents/current/core/howto/ ...