借助heap数据结构实现。

以小顶heap为例(说明值越小优先级越高,如距离),代码如下:

 //  PriorityQueue.java
// Java Spatial Index Library
// Copyright (C) 2008 aled@users.sourceforge.net
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2.1 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA package buaa.act.ucar.moi; import java.io.Serializable; import gnu.trove.list.array.TFloatArrayList;
import gnu.trove.list.array.TIntArrayList; /**
* <p>
* Priority Queue that stores values as ints and priorities as floats. Uses a
* Heap to sort the priorities; the values are sorted "in step" with the
* priorities.
* </p>
* <p>
* A Heap is simply an array that is kept semi sorted; in particular if the
* elements of the array are arranged in a tree structure; ie
* </p>
*
* <pre>
* 00
* / \
* 01 02
* / \ / \
* 03 04 05 06
* /\ /\ /\ /\
* 07 08 09 10 11 12 13 14
* </pre>
* <p>
* then each parent is kept sorted with respect to it's immediate children. E.g.
* 00 < 01, 00 < 02, 02 < 05, 02 < 06
* </p>
* <p>
* This means that the array appears to be sorted, as long as we only ever look
* at element 0.
* </p>
* <p>
* Inserting new elements is much faster than if the entire array was kept
* sorted; a new element is appended to the array, and then recursively swapped
* with each parent to maintain the "parent is sorted w.r.t it's children"
* property.
* </p>
* <p>
* To return the "next" value it is necessary to remove the root element. The
* last element in the array is placed in the root of the tree, and is
* recursively swapped with one of it's children until the "parent is sorted
* w.r.t it's children" property is restored.
* </p>
* <p>
* Random access is slow (eg for deleting a particular value), and is not
* implemented here - if this functionality is required, then a heap probably
* isn't the right data structure.
* </p>
*/
public class PriorityQueue implements Serializable {
private static final long serialVersionUID = -5653506138757217673L;
public static final boolean SORT_ORDER_ASCENDING = true;
public static final boolean SORT_ORDER_DESCENDING = false; private TIntArrayList values = null;
private TFloatArrayList priorities = null;
private boolean sortOrder = SORT_ORDER_ASCENDING; private static boolean INTERNAL_CONSISTENCY_CHECKING = false; public PriorityQueue(boolean sortOrder) {
this(sortOrder, 10);
} public PriorityQueue(boolean sortOrder, int initialCapacity) {
this.sortOrder = sortOrder;
values = new TIntArrayList(initialCapacity);
priorities = new TFloatArrayList(initialCapacity);
} /**
* @param p1
* @param p2
* @return true if p1 has an earlier sort order than p2.
*/
private boolean sortsEarlierThan(float p1, float p2) {
if (sortOrder == SORT_ORDER_ASCENDING) {
return p1 < p2;
}
return p2 < p1;
} // to insert a value, append it to the arrays, then
// reheapify by promoting it to the correct place.
public void insert(int value, float priority) {
values.add(value);
priorities.add(priority); promote(values.size() - 1, value, priority);
} private void promote(int index, int value, float priority) {
// Consider the index to be a "hole"; i.e. don't swap priorities/values
// when moving up the tree, simply copy the parent into the hole and
// then consider the parent to be the hole.
// Finally, copy the value/priority into the hole.
while (index > 0) {
int parentIndex = (index - 1) / 2;
float parentPriority = priorities.get(parentIndex); if (sortsEarlierThan(parentPriority, priority)) {
break;
} // copy the parent entry into the current index.
values.set(index, values.get(parentIndex));
priorities.set(index, parentPriority);
index = parentIndex;
} values.set(index, value);
priorities.set(index, priority); if (INTERNAL_CONSISTENCY_CHECKING) {
check();
}
} public int size() {
return values.size();
} public void clear() {
values.clear();
priorities.clear();
} public void reset() {
values.reset();
priorities.reset();
} public int getValue() {
return values.get(0);
} public float getPriority() {
return priorities.get(0);
} private void demote(int index, int value, float priority) {
int childIndex = (index * 2) + 1; // left child while (childIndex < values.size()) {
float childPriority = priorities.get(childIndex); if (childIndex + 1 < values.size()) {
float rightPriority = priorities.get(childIndex + 1);
if (sortsEarlierThan(rightPriority, childPriority)) {
childPriority = rightPriority;
childIndex++; // right child
}
} if (sortsEarlierThan(childPriority, priority)) {
priorities.set(index, childPriority);
values.set(index, values.get(childIndex));
index = childIndex;
childIndex = (index * 2) + 1;
} else {
break;
}
} values.set(index, value);
priorities.set(index, priority);
} // get the value with the lowest priority
// creates a "hole" at the root of the tree.
// The algorithm swaps the hole with the appropriate child, until
// the last entry will fit correctly into the hole (ie is lower
// priority than its children)
public int pop() {
int ret = values.get(0); // record the value/priority of the last entry
int lastIndex = values.size() - 1;
int tempValue = values.get(lastIndex);
float tempPriority = priorities.get(lastIndex); values.removeAt(lastIndex);
priorities.removeAt(lastIndex); if (lastIndex > 0) {
demote(0, tempValue, tempPriority);
} if (INTERNAL_CONSISTENCY_CHECKING) {
check();
} return ret;
} public void setSortOrder(boolean sortOrder) {
if (this.sortOrder != sortOrder) {
this.sortOrder = sortOrder;
// reheapify the arrays
for (int i = (values.size() / 2) - 1; i >= 0; i--) {
demote(i, values.get(i), priorities.get(i));
}
}
if (INTERNAL_CONSISTENCY_CHECKING) {
check();
}
} private void check() {
// for each entry, check that the child entries have a lower or equal
// priority
int lastIndex = values.size() - 1; for (int i = 0; i < values.size() / 2; i++) {
float currentPriority = priorities.get(i); int leftIndex = (i * 2) + 1;
if (leftIndex <= lastIndex) {
float leftPriority = priorities.get(leftIndex);
if (sortsEarlierThan(leftPriority, currentPriority)) {
System.err.println("Internal error in PriorityQueue");
}
} int rightIndex = (i * 2) + 2;
if (rightIndex <= lastIndex) {
float rightPriority = priorities.get(rightIndex);
if (sortsEarlierThan(rightPriority, currentPriority)) {
System.err.println("Internal error in PriorityQueue");
}
}
}
}
}

PriorityQueue的Java实现的更多相关文章

  1. Java中的队列Queue,优先级队列PriorityQueue

    队列Queue 在java5中新增加了java.util.Queue接口,用以支持队列的常见操作.该接口扩展了java.util.Collection接口. Queue使用时要尽量避免Collecti ...

  2. java中PriorityQueue优先级队列使用方法

    优先级队列是不同于先进先出队列的另一种队列.每次从队列中取出的是具有最高优先权的元素. PriorityQueue是从JDK1.5开始提供的新的数据结构接口. 如果不提供Comparator的话,优先 ...

  3. 《转》JAVA中PriorityQueue优先级队列使用方法

    该文章转自:http://blog.csdn.net/hiphopmattshi/article/details/7334487 优先级队列是不同于先进先出队列的另一种队列.每次从队列中取出的是具有最 ...

  4. 【转】java中PriorityQueue优先级队列使用方法

    优先级队列是不同于先进先出队列的另一种队列.每次从队列中取出的是具有最高优先权的元素. PriorityQueue是从JDK1.5开始提供的新的数据结构接口. 如果不提供Comparator的话,优先 ...

  5. Java Queue之PriorityQueue

    PriorityQueue位于Java util包中,观其名字前半部分的单词Priority是优先的意思,实际上这个队列就是具有“优先级”.既然具有优先级的特性,那么就得有个前后排序的“规则”.所以其 ...

  6. # Java Queue系列之PriorityQueue

    在上一篇中我用一张图来梳理了一下Java中的各种Queue之间的关系.这里介绍下PriorityQueue.PriorityQueue位于Java util包中,观其名字前半部分的单词Priority ...

  7. java 中PriorityQueue优先级队列使用方法

    1.前言 优先级队列是不同于先进先出队列的另一种队列.每次从队列中取出的是具有最高优先权的元素. PriorityQueue是从JDK1.5开始提供的新的数据结构接口. 如果想实现按照自己的意愿进行优 ...

  8. 【Java源码】集合类-优先队列PriorityQueue

    一.类继承关系 public class PriorityQueue<E> extends AbstractQueue<E> implements java.io.Serial ...

  9. Java找N个数中最小的K个数,PriorityQueue和Arrays.sort()两种实现方法

    最近看到了 java.util.PriorityQueue.刚看到还没什么感觉,今天突然发现他可以用来找N个数中最小的K个数. 假设有如下 10 个整数. 5 2 0 1 4 8 6 9 7 3 怎么 ...

随机推荐

  1. BigBao 的python开发到DevOps 之路

    本人是打杂的,从想学Python到自学Python,最后到报班培训Python路程总共用时两年,目前在培训Python.因为我这个大脑不适合自学.脑袋笨,自制力差,所以没办法只有乖乖交钱学python ...

  2. ansible 学习记录

    Ansible 的重新学习记录 这里我的Ansible的宿主机是centos 7.2系统,这里我通过yum 安装Ansible 1.配置epel源 sudo yum -y install epel-r ...

  3. 坊间流传着的关于谷歌大牛Jeff Dean的传说

    Jeff Dean,Google的软件架构天才.Google大型并发编程框架Map/Reduce作者. 在Google,公司最顶尖的编程高手Jeff Dean曾发明过一种先进的方法,该方法可以让一个程 ...

  4. Atitit js es5 es6新特性 attilax总结

    Atitit js es5 es6新特性 attilax总结 1.1. JavaScript发展时间轴:1 1.2. 以下是ES6排名前十的最佳特性列表(排名不分先后):1 1.3. Es6 支持情况 ...

  5. Atitit 爬虫 node版 attilaxA

    Atitit 爬虫 node版 attilax 1.1. 貌似不跟python压实,,java的webmagic压实,,什么爬虫框架也没有,只好自己写了. 查了百度三爷资料也没有.都是自己写.. 1. ...

  6. HTML5学习笔记(二十六):JavaScript的错误处理

    错误相关的调试和处理在开发中是特别重要的一种技能. try-catch 我们来看下面的情况: // noneFunc 这个方法并不存在 window.noneFunc(); // js 报错后终止运行 ...

  7. 关于angular的$resource中的isArray属性问题

    在之前的文章中讲到了在使用$resource的时候,有一个isArray属性. 这个属性在两个地方有提到: 1. angular学习笔记(二十八)-$http(6)-使用ngResource模块构建R ...

  8. Sql Server 查询库表记录数

    ), RowCnt INT) EXEC sp_MSforeachtable 'INSERT INTO #temp SELECT ''?'', COUNT(*) FROM ?' desc DROP TA ...

  9. webpack学习文档

    webpack课程 目录 第1章 webpack简介... 1 1.1    webpack是什么?... 1 1.2    官网地址... 2 1.3    为什么使用 webpack?... 3 ...

  10. yum卸载失败Error in PREUN scriptlet in rpm package postgresql-server

    yum --setopt=tsflags=noscripts remove 参考 https://serverfault.com/questions/613256/yum-error-in-preun ...