引自:GAN学习指南:从原理入门到制作生成Demo

生成式对抗网络(GAN)是近年来大热的深度学习模型。最近正好有空看了这方面的一些论文,跑了一个GAN的代码,于是写了这篇文章来介绍一下GAN。

本文主要分为三个部分:

  • 介绍原始的GAN的原理
  • 同样非常重要的DCGAN的原理
  • 如何在Tensorflow跑DCGAN的代码,生成如题图所示的动漫头像,附送数据集哦 :-)

GAN原理介绍

说到GAN第一篇要看的paper当然是Ian Goodfellow大牛的Generative Adversarial Networks(arxiv:https://arxiv.org/abs/1406.2661),这篇paper算是这个领域的开山之作。

GAN的基本原理其实非常简单,这里以生成图片为例进行说明。假设我们有两个网络,G(Generator)和D(Discriminator)。正如它的名字所暗示的那样,它们的功能分别是:

  • G是一个生成图片的网络,它接收一个随机的噪声z,通过这个噪声生成图片,记做G(z)。
  • D是一个判别网络,判别一张图片是不是“真实的”。它的输入参数是x,x代表一张图片,输出D(x)代表x为真实图片的概率,如果为1,就代表100%是真实的图片,而输出为0,就代表不可能是真实的图片。

在训练过程中,生成网络G的目标就是尽量生成真实的图片去欺骗判别网络D。而D的目标就是尽量把G生成的图片和真实的图片分别开来。这样,G和D构成了一个动态的“博弈过程”。

最后博弈的结果是什么?在最理想的状态下,G可以生成足以“以假乱真”的图片G(z)。对于D来说,它难以判定G生成的图片究竟是不是真实的,因此D(G(z)) = 0.5。

这样我们的目的就达成了:我们得到了一个生成式的模型G,它可以用来生成图片。

以上只是大致说了一下GAN的核心原理,如何用数学语言描述呢?这里直接摘录论文里的公式:

简单分析一下这个公式:

  • 整个式子由两项构成。x表示真实图片,z表示输入G网络的噪声,而G(z)表示G网络生成的图片。
  • D(x)表示D网络判断真实图片是否真实的概率(因为x就是真实的,所以对于D来说,这个值越接近1越好)。而D(G(z))是D网络判断G生成的图片的是否真实的概率。
  • G的目的:上面提到过,D(G(z))是D网络判断G生成的图片是否真实的概率,G应该希望自己生成的图片“越接近真实越好”。也就是说,G希望D(G(z))尽可能得大,这时V(D, G)会变小。因此我们看到式子的最前面的记号是min_G。
  • D的目的:D的能力越强,D(x)应该越大,D(G(x))应该越小。这时V(D,G)会变大。因此式子对于D来说是求最大(max_D)

下面这幅图片很好地描述了这个过程:

那么如何用随机梯度下降法训练D和G?论文中也给出了算法:

这里红框圈出的部分是我们要额外注意的。第一步我们训练D,D是希望V(G, D)越大越好,所以是加上梯度(ascending)。第二步训练G时,V(G, D)越小越好,所以是减去梯度(descending)。整个训练过程交替进行。

DCGAN原理介绍

我们知道深度学习中对图像处理应用最好的模型是CNN,那么如何把CNN与GAN结合?DCGAN是这方面最好的尝试之一(论文地址:[1511.06434] Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks)

DCGAN的原理和GAN是一样的,这里就不在赘述。它只是把上述的G和D换成了两个卷积神经网络(CNN)。但不是直接换就可以了,DCGAN对卷积神经网络的结构做了一些改变,以提高样本的质量和收敛的速度,这些改变有:

  • 取消所有pooling层。G网络中使用转置卷积(transposed convolutional layer)进行上采样,D网络中用加入stride的卷积代替pooling。
  • 在D和G中均使用batch normalization
  • 去掉FC层,使网络变为全卷积网络
  • G网络中使用ReLU作为激活函数,最后一层使用tanh
  • D网络中使用LeakyReLU作为激活函数

DCGAN中的G网络示意:

DCGAN in Tensorflow

好了,上面说了一通原理,下面说点有意思的实践部分的内容。

DCGAN的原作者用DCGAN生成LSUN的卧室图片,这并不是特别有意思。之前在网上看到一篇文章 Chainerで顔イラストの自動生成 - Qiita ,是用DCGAN生成动漫人物头像的,效果如下:

这是个很有趣的实践内容。可惜原文是用Chainer做的,这个框架使用的人不多。下面我们就在Tensorflow中复现这个结果。

原始数据集的搜集

首先我们需要用爬虫爬取大量的动漫图片,原文是在这个网站:http://safebooru.donmai.us/中爬取的。我尝试的时候,发现在我的网络环境下无法访问这个网站,于是我就写了一个简单的爬虫爬了另外一个著名的动漫图库网站:konachan.net - Konachan.com Anime Wallpapers

爬虫代码如下:

import requests
from bs4 import BeautifulSoup
import os
import traceback def download(url, filename):
if os.path.exists(filename):
print('file exists!')
return
try:
r = requests.get(url, stream=True, timeout=)
r.raise_for_status()
with open(filename, 'wb') as f:
for chunk in r.iter_content(chunk_size=):
if chunk: # filter out keep-alive new chunks
f.write(chunk)
f.flush()
return filename
except KeyboardInterrupt:
if os.path.exists(filename):
os.remove(filename)
raise KeyboardInterrupt
except Exception:
traceback.print_exc()
if os.path.exists(filename):
os.remove(filename) if os.path.exists('imgs') is False:
os.makedirs('imgs') start =
end =
for i in range(start, end + ):
url = 'http://konachan.net/post?page=%d&tags=' % i
html = requests.get(url).text
soup = BeautifulSoup(html, 'html.parser')
for img in soup.find_all('img', class_="preview"):
target_url = 'http:' + img['src']
filename = os.path.join('imgs', target_url.split('/')[-])
download(target_url, filename)
print('%d / %d' % (i, end))

这个爬虫大概跑了一天,爬下来12万张图片,大概是这样的:

可以看到这里面的图片大多数比较杂乱,还不能直接作为数据训练,我们需要用合适的工具,截取人物的头像进行训练。

头像截取

截取头像和原文一样,直接使用github上一个基于opencv的工具:nagadomi/lbpcascade_animeface

简单包装下代码:

作者:何之源
链接:https://zhuanlan.zhihu.com/p/24767059
来源:知乎
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。 import cv2
import sys
import os.path
from glob import glob def detect(filename, cascade_file="lbpcascade_animeface.xml"):
if not os.path.isfile(cascade_file):
raise RuntimeError("%s: not found" % cascade_file) cascade = cv2.CascadeClassifier(cascade_file)
image = cv2.imread(filename)
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
gray = cv2.equalizeHist(gray) faces = cascade.detectMultiScale(gray,
# detector options
scaleFactor=1.1,
minNeighbors=,
minSize=(, ))
for i, (x, y, w, h) in enumerate(faces):
face = image[y: y + h, x:x + w, :]
face = cv2.resize(face, (, ))
save_filename = '%s-%d.jpg' % (os.path.basename(filename).split('.')[], i)
cv2.imwrite("faces/" + save_filename, face) if __name__ == '__main__':
if os.path.exists('faces') is False:
os.makedirs('faces')
file_list = glob('imgs/*.jpg')
for filename in file_list:
detect(filename)

截取头像后的人物数据:

这样就可以用来训练了!

如果你不想从头开始爬图片,可以直接使用我爬好的头像数据(275M,约5万多张图片):https://pan.baidu.com/s/1eSifHcA 提取码:g5qa

训练

DCGAN在Tensorflow中已经有人造好了轮子:carpedm20/DCGAN-tensorflow,我们直接使用这个代码就可以了。

不过原始代码中只提供了有限的几个数据库,如何训练自己的数据?在model.py中我们找到读数据的几行代码:

if config.dataset == 'mnist':
data_X, data_y = self.load_mnist()
else:
data = glob(os.path.join("./data", config.dataset, "*.jpg"))

这样读数据的逻辑就很清楚了,我们在data文件夹中再新建一个anime文件夹,把图片直接放到这个文件夹里,运行时指定–dataset anime即可。

运行指令(参数含义:指定生成的图片的尺寸为48x48,我们图片的大小是96x96,跑300个epoch):

python main.py --image_size  --output_size  --dataset anime --is_crop True --is_train True --epoch 

结果

第1个epoch跑完(只有一点点轮廓):

第5个epoch之后的结果:

第10个epoch:

200个epoch,仔细看有些图片确实是足以以假乱真的:

题图是我从第300个epoch生成的。

总结和后续

简单介绍了一下GAN和DCGAN的原理。以及如何使用Tensorflow做一个简单的生成图片的demo。

DCGAN in Tensorflow生成动漫人物的更多相关文章

  1. 0902-用GAN生成动漫头像

    0902-用GAN生成动漫头像 目录 一.概述 二.代码结构 三.model.py 3.1 生成器 3.2 判别器 四.参数配置 五.数据处理 六.训练 七.随机生成图片 八.训练模型并测试 pyto ...

  2. Tensorflow生成唐诗和歌词(下)

    整个工程使用的是Windows版pyCharm和tensorflow. 源码地址:https://github.com/Irvinglove/tensorflow_poems/tree/master ...

  3. Tensorflow生成唐诗和歌词(上)

    整个工程使用的是Windows版pyCharm和tensorflow. 源码地址:https://github.com/Irvinglove/tensorflow_poems/tree/master ...

  4. 3. Tensorflow生成TFRecord

    1. Tensorflow高效流水线Pipeline 2. Tensorflow的数据处理中的Dataset和Iterator 3. Tensorflow生成TFRecord 4. Tensorflo ...

  5. TensorFlow 生成 .ckpt 和 .pb

    原文:https://www.cnblogs.com/nowornever-L/p/6991295.html 1. TensorFlow  生成的  .ckpt 和  .pb 都有什么用? The . ...

  6. 『TensorFlow』DCGAN生成动漫人物头像_下

    『TensorFlow』以GAN为例的神经网络类范式 『cs231n』通过代码理解gan网络&tensorflow共享变量机制_上 『TensorFlow』通过代码理解gan网络_中 一.计算 ...

  7. 【神经网络与深度学习】DCGAN及其TensorFlow源码

    上一节我们提到G和D由多层感知机定义.深度学习中对图像处理应用最好的模型是CNN,那么如何把CNN与GAN结合?DCGAN是这方面最好的尝试之一.源码:https://github.com/Newmu ...

  8. tensorflow 生成随机数 tf.random_normal 和 tf.random_uniform 和 tf.truncated_normal 和 tf.random_shuffle

    ____tz_zs tf.random_normal 从正态分布中输出随机值. . <span style="font-size:16px;">random_norma ...

  9. tensorflow生成随机数的操作 tf.random_normal & tf.random_uniform & tf.truncated_normal & tf.random_shuffle

    tf.random_normal 从正态分布输出随机值. random_normal(shape,mean=0.0,stddev=1.0,dtype=tf.float32,seed=None,name ...

随机推荐

  1. SQL语句操作优先级顺序

    SQL 不同于与其他编程语言的最明显特征是处理代码的顺序.在大数编程语言中,代码按编码顺序被处理,但是在SQL语言中,第一个被处理的子句是FROM子句,尽管SELECT语句第一个出现,但是几乎总是最后 ...

  2. Java 8 – Convert a Stream to LIST

    Java 8 – Convert a Stream to LIST package com.mkyong.java8; import java.util.List;import java.util.s ...

  3. hive元数据研究

    hive的元数据存放在关系型数据库中,元数据中存储了hive中所有表格的信息,包括表格的名字,表格的字段,字段的类型,注释.这些信息分散的存放在各个表中,给定一个hive中的表格名字,查询这个表中含有 ...

  4. JAXB--@XmlElementWrapper注解和泛型一起使用

    当java对象的某个属性使用泛型时,普通对象都没问题,但是遇到HashSet这种集合类封装的元素时,就会出现元素内容序列化不出来的问题,详见如下: 一.示例: 第一步:定义java对象 package ...

  5. [na]二层sw数据交换

    1,同vlan下,两台pc配置了GW,arp请求过程. Pc1 ping pc0的时候,触发pc1的arp请求,发给GW后,GW继续发给pc0(同一个vlan),pc0收到后给pc1回复.Pc1发出i ...

  6. 使用Karma、Mocha实现vue单元测试

    Karma Karma是一个基于Node.js的JavaScript测试执行过程管理工具(Test Runner).该工具在Vue中的主要作用是将项目运行在各种主流Web浏览器进行测试.换句话说,它是 ...

  7. C++哪些运算符重载能够重载?

    运算符重载是C++极为重要的语言特性之中的一个.本文将用代码实例回答--C++哪些运算符能够重载?怎样重载?实现运算符重载时须要注意哪些? 哪些运算符能够重载,哪些不可重载? C++98,C++0x, ...

  8. Quartz.Net定时任务EF+MVC版的web服务

    之前项目采用JAVA 的 Quartz 进行定时服调度务处理程序,目前在.NET下面使用依然可以完成相同的工作任务,其实什么语言不重要,关键是我们要学会利用语言实现价值.它是一个简单的执行任务计划的组 ...

  9. 每日英语:A Buying Guide to Air-Pollution Masks

    Blue skies were finally visible in the capital on Thursday after the region suffered fromseven strai ...

  10. 每日英语:South India's Streetside Coffee Culture

    Early one morning last week I queued outside Sri Gopi Iyengar Coffee and Tiffin Center, a coffee bar ...