poj 3042 Grazing on the Run
这个题目原型应该是吃完所有的草丛的最小时间,现在变成了每个草丛被吃的时间和,貌似如果还是按照原来的dp方法dp[i][j]表示吃完i到j的草丛的花掉的时间的话,有两个因素会影响后面的决策,一个是花掉的时间,一个是吃掉的草丛的时间累加和。
但是仔细观察这个问题会发现,第一个走的距离,会被计算n次,第二个走的距离,会被计算n-1次。如果我们把这个代价转移到该草丛上的话。那么dp[i][j]表示转移后的花掉的时间,那么现在影响后面决策的就只有这个时间了。那么问题就解决了。
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int maxn=1e3+9;
int n,l;
int a[maxn],dp[maxn][maxn][2];
int main()
{
// freopen("in.txt","r",stdin);
while(scanf("%d%d",&n,&l)!=EOF)
{
for(int i=1;i<=n;i++) scanf("%d",&a[i]);
n++;a[n]=l;
sort(a+1,a+1+n);
int t=lower_bound(a+1,a+n,l)-a;
memset(dp,50,sizeof(dp));
dp[t][t][0]=0;
for(int k=0;k<n-1;k++)
for(int i=max(1,t-k);i<=min(n,t+k);i++)
{
dp[i-1][i+k][0]=min(dp[i][i+k][0]+(a[i]-a[i-1])*(n-k-1),dp[i][i+k][1]+(a[i+k]-a[i-1])*(n-k-1));
dp[i][i+k+1][1]=min(dp[i][i+k][0]+(a[i+k+1]-a[i])*(n-k-1),dp[i][i+k][1]+(a[i+k+1]-a[i+k])*(n-k-1));
}
int ans=min(dp[1][n][0],dp[1][n][1]);
cout<<ans<<endl;
}
return 0;
}
poj 3042 Grazing on the Run的更多相关文章
- BZOJ 1742: [Usaco2005 nov]Grazing on the Run 边跑边吃草( dp )
dp... dp( l , r , k ) , 表示 吃了[ l , r ] 的草 , k = 1 表示最后在 r 处 , k = 0 表示最后在 l 处 . ------------------- ...
- bzoj1742[Usaco2005 nov]Grazing on the Run 边跑边吃草*&&bzoj3074[Usaco2013 Mar]The Cow Run*
bzoj1742[Usaco2005 nov]Grazing on the Run 边跑边吃草 bzoj3074[Usaco2013 Mar]The Cow Run 题意: 数轴上有n棵草,牛初始在L ...
- BZOJ1742[Usaco2005 nov]Grazing on the Run
Description John养了一只叫Joseph的奶牛.一次她去放牛,来到一个非常长的一片地,上面有N块地方长了茂盛的草.我们可 以认为草地是一个数轴上的一些点.Joseph看到这些草非常兴奋, ...
- [Usaco2005 nov]Grazing on the Run 边跑边吃草 BZOJ1742
分析: 首先,连续选择一段必定最优... 区间DP,f[i][j]表示从i开始,连续j个被吃掉了,并且,牛在i处,g[i][j]则表示在i+j-1处 f[i][j]可以从g[i+1][j]和f[i+1 ...
- 2018.10.22 bzoj1742: Grazing on the Run 边跑边吃草(区间dp)
传送门 区间dp入门题. 可以想到当前吃掉的草一定是一个区间(因为经过的草一定会吃掉). 然后最后一定会停在左端点或者右端点. f[i][j][0/1]f[i][j][0/1]f[i][j][0/1] ...
- 【bzoj1742】[Usaco2005 nov]Grazing on the Run 边跑边吃草 区间dp
题目描述 John养了一只叫Joseph的奶牛.一次她去放牛,来到一个非常长的一片地,上面有N块地方长了茂盛的草.我们可以认为草地是一个数轴上的一些点.Joseph看到这些草非常兴奋,它想把它们全部吃 ...
- BZOJ1742: [Usaco2005 nov]Grazing on the Run 边跑边吃草
数轴上n<=1000个点,从p出发以任意顺序走到所有的点,求到达每个点的时间之和的最小值. 好题!看起来水水的实际易错! 显然的结论是经过一个区间点之后肯定落在左端点或右端点上,谁没事最后还往中 ...
- bzoj 1742: [Usaco2005 nov]Grazing on the Run 边跑边吃草【区间dp】
挺好的区间dp,状态设计很好玩 一开始按套路设f[i][j],g[i][j]为吃完(i,j)区间站在i/j的最小腐败值,后来发现这样并不能保证最优 实际上是设f[i][j],g[i][j]为从i开始吃 ...
- POJ 3042 区间DP(费用提前计算相关的DP)
题意: 思路: f[i][j][1]表示从i到j的区间全都吃完了 现在在j点 变质期最小是多少 f[i][j][0]表示从i到j的区间全都吃完了 现在在i点 变质期最小是多少 f[i][j][0]=m ...
随机推荐
- tomcat内存溢出设置JAVA_OPTS
答案1设置Tomcat启动的初始内存其初始空间(即-Xms)是物理内存的1/64,最大空间(-Xmx)是物理内存的1/4.可以利用JVM提供的-Xmn -Xms -Xmx等选项可进行设置三.实例,以 ...
- Xcode6 itunes完美打包api 方法
转:http://bbs.csdn.net/topics/390948190 Xcode6 itunes完美打包api 方法! 特点轻盈小巧,方便快捷!
- C#编程(五十六)----------可观察的集合ObservableCollection
原文链接: http://blog.csdn.net/shanyongxu/article/details/47080685 可观察的集合 如果需要集合中的元素核实删除或添加的信息,就可以使用Obse ...
- ZooKeeper_客户端工具zkCli.sh使用
#一.命令 [root@VM_31_182_centos bin]# ./zkCli.sh -server 127.0.0.1:2181 #二.帮助命令 help #三.创建.修改.删除.退出de ...
- 升级IOS8游戏上传自定义头像功能失效的问题
为了支持arm64,之前已经折腾了很久,昨晚打包准备提交苹果审核时,测试那边的同事反馈说游戏上传自定义头像功能不可用了. 游戏上传自定义功能的简介:卡牌游戏最初是<比武招亲>中有一个充VI ...
- Android之在string.xml配置文字颜色粗体等效果
string.xml <string name="exchange_txt_hint"><Data><![CDATA[请使用<font colo ...
- C#中的命名空间namespace与Java中的包package之间的区别
Java 包被用来组织文件或公共类型以避免类型冲突.包结构可以映射到文件系统. System.Security.Cryptography.AsymmetricAlgorithm aa; 可能被替换: ...
- LaTeX技巧:LaTeX括号总结
功能 语法 显示 不好看 ( \frac{1}{2} ) 好一点 \left( \frac{1}{2} \right) 您可以使用\left和\right来显示不同的括号: 功能 语法 显示 ...
- protobuf中的编码规则
protobuf中的编码规则 (1)序列化和反序列化: 在开始本部分的内容之前,首先有必要介绍两个基本概念,一个是序列化,一个是反序列化.这两个概念的定义在网上搜一下都很多的,但大多都讲得比较晦涩,不 ...
- @Autowired用法详解
@Autowired 注释,它可以对类成员变量.方法及构造函数进行标注,完成自动装配的工作. 通过 @Autowired的使用来消除 set ,get方法.在使用@Autowired之前,我们对一个b ...