1.看到 这篇总结的这么好, 就悄悄的转过来,供学习

wordcount.toDebugString查看RDD的继承链条

所以广义的讲,对任何函数进行某一项操作都可以认为是一个算子,甚至包括求幂次,开方都可以认为是一个算子,只是有的算子我们用了一个符号来代替他所要进行的运算罢了,所以大家看到算子就不要纠结,他和f(x)的f没区别,它甚至和加减乘除的基本运算符号都没有区别,只是他可以对单对象操作罢了(有的符号比如大于、小于号要对多对象操作)。又比如取概率P{X<x},概率是集合{X<x}(他是属于实数集的子集)对[0,1]区间的一个映射,我们知道实数域和[0,1]区间是可以一一映射的(这个后面再说),所以取概率符号P,我们认为也是一个算子,和微分,积分算子算子没区别。

总而言之,算子就是映射,就是关系,就是**变换**!

**mapPartitions(f)**
f函数的输入输出都是每个分区集合的迭代器Iterator

def mapPartitions[U](f: (Iterator[T]) => Iterator[U], preservesPartitioning: Boolean = false)(implicit arg0: ClassTag[U]): RDD[U]
该函数和map函数类似,只不过映射函数的参数由RDD中的每一个元素变成了RDD中每一个分区的迭代器。如果在映射的过程中需要频繁创建额外的对象,使用mapPartitions要比map高效的过。
比如,将RDD中的所有数据通过JDBC连接写入数据库,如果使用map函数,可能要为每一个元素都创建一个connection,这样开销很大,如果使用mapPartitions,那么只需要针对每一个分区建立一个connection。
参数preservesPartitioning表示是否保留父RDD的partitioner分区信息。
参考文章:
http://lxw1234.com/archives/2015/07/348.htm

union(other: RDD[T])操作不去重,去重需要distinct()

subtract取两个RDD中非公共的元素

sample返回RDD,takeSample直接返回数组(数组里面的元素为RDD中元素,类似于collect)

keyvalue之类的操作都在**PairRDDFunctions.scala**中

mapValues只对value进行运算

groupBy相同key的元素的value组成集合

coGroup是在groupBy的基础上

coGroup操作多个RDD,是两个RDD里相同key的两个value集合组成的元组

参考文章:
http://www.iteblog.com/archives/1280

**combineByKey和reduceByKey,groupByKey(内部都是通过combineByKey)**

源码分析:

reduceByKey  mapSideCombine: Boolean = true
    
    groupByKey  mapSideCombine=false

所以优先使用reduceByKey,参考文章:http://www.iteblog.com/archives/1357

**join操作**

本质是先coGroup再笛卡尔积
    
      def join[W](other: RDD[(K, W)], partitioner: Partitioner): RDD[(K, (V, W))] = {
    this.cogroup(other, partitioner).flatMapValues( pair =>
      for (v <- pair._1.iterator; w <- pair._2.iterator) yield (v, w)
    )
      }

**yield** 关键字的简短总结:

针对每一次 for 循环的迭代, yield 会产生一个值,被循环记录下来 (内部实现上,像是一个缓冲区).
    当循环结束后, 会返回所有 yield 的值组成的集合.
    返回集合的类型与被遍历的集合类型是一致的.

参考文章:
http://unmi.cc/scala-yield-samples-for-loop/

cache persist也是lazy级别的

Action本质sc.runJob

foreach

collect()相当于toArray返回一个数组

collectAsMap()对keyvalue类型的RDD操作返回一个HashMap,key重复后面的元素会覆盖前面的元素reduce

源码解析:先调用collect()再放到HashMap[K, V]中

def collectAsMap(): Map[K, V] = {
    val data = self.collect()
    val map = new mutable.HashMap[K, V]
    map.sizeHint(data.length)
    data.foreach { pair => map.put(pair._1, pair._2) }
    map
      }
    
**reduceByKeyLocally**相当于reduceByKey+collectAsMap()

该函数将RDD[K,V]中每个K对应的V值根据映射函数来运算,运算结果映射到一个Map[K,V]中,而不是RDD[K,V]。

参考文章:
http://lxw1234.com/archives/2015/07/360.htm

**lookup**也是针对keyvalue返回指定key对应的value形成的seq

def lookup(key: K): Seq[V]

**reduce fold(每个分区是串行,有个初始值) aggregate(并行,与fold类似)**

前两个元素作用的结果与第三元素作用依次类推

**SequenceFile**文件是Hadoop用来存储二进制形式的key-value对而设计的一种平面文件(Flat File)。目前,也有不少人在该文件的基础之上提出了一些HDFS中小文件存储的解决方案,他们的基本思路就是将小文件进行合并成一个大文件,同时对这些小文件的位置信息构建索引。不过,这类解决方案还涉及到Hadoop的另一种文件格式——**MapFile**文件。SequenceFile文件并不保证其存储的key-value数据是按照key的某个顺序存储的,同时不支持append操作。

参考文章:http://blog.csdn.net/xhh198781/article/details/7693358

**saveAsTextFile**->TextOutputFormat  (key为null,value为元素toString)

**saveAsObjectFile**(二进制)->saveAsSequenceFile->SequenceFileOutputFormat(key为null,value为BytesWritable)

cache\persist

**checkpoint()**机制避免缓存丢失(内存不足)要重新计算带来的性能开销,会导致另外一个作业,比缓存更可靠

SparkContex.setCheckpointDir设置目录位置

spark rdd Transformation和Action 剖析的更多相关文章

  1. spark RDD transformation与action函数整理

    1.创建RDD val lines = sc.parallelize(List("pandas","i like pandas")) 2.加载本地文件到RDD ...

  2. Spark RDD Transformation 简单用例(三)

    cache和persist 将RDD数据进行存储,persist(newLevel: StorageLevel)设置了存储级别,cache()和persist()是相同的,存储级别为MEMORY_ON ...

  3. Spark(四)Spark之Transformation和Action

    Transformation算子 基本的初始化 java static SparkConf conf = null; static JavaSparkContext sc = null; static ...

  4. Spark RDD Transformation 简单用例(二)

    aggregateByKey(zeroValue)(seqOp, combOp, [numTasks]) aggregateByKey(zeroValue)(seqOp, combOp, [numTa ...

  5. Spark RDD Transformation 简单用例(一)

    map(func) /** * Return a new RDD by applying a function to all elements of this RDD. */ def map[U: C ...

  6. Spark RDD/Core 编程 API入门系列 之rdd实战(rdd基本操作实战及transformation和action流程图)(源码)(三)

    本博文的主要内容是: 1.rdd基本操作实战 2.transformation和action流程图 3.典型的transformation和action RDD有3种操作: 1.  Trandform ...

  7. Spark学习笔记之RDD中的Transformation和Action函数

    总算可以开始写第一篇技术博客了,就从学习Spark开始吧.之前阅读了很多关于Spark的文章,对Spark的工作机制及编程模型有了一定了解,下面把Spark中对RDD的常用操作函数做一下总结,以pys ...

  8. (七)Transformation和action详解-Java&Python版Spark

    Transformation和action详解 视频教程: 1.优酷 2.YouTube 什么是算子 算子是RDD中定义的函数,可以对RDD中的数据进行转换和操作. 算子分类: 具体: 1.Value ...

  9. Spark Streaming揭秘 Day24 Transformation和action图解

    Spark Streaming揭秘 Day24 Transformation和action图解 今天我们进入SparkStreaming的数据处理,谈一下两个重要的操作Transfromation和a ...

随机推荐

  1. CF 329A(Purification-贪心-非DLX)

    A. Purification time limit per test 1 second memory limit per test 256 megabytes input standard inpu ...

  2. 第二章 Base64与URLBase64

    2.1.算法基本规则: 加密的算法公开 加密的密钥不公开 Base64算法公开.密钥也公开的特性不符合基本算法规则,所以很容易被破解,所以一般不用于企业级的加密操作. 注意:具体的算法与密钥(对于Ba ...

  3. 使用Java语言开发微信公众平台(三)——被关注回复与关键词回复

    在上一篇文章中,我们实现了文本消息的接收与响应.可以在用户发送任何内容的时候,回复一段固定的文字.本章节中,我们将对上一章节的代码进行适当的完善,同时实现[被关注回复与关键词回复]功能. 一.微信可提 ...

  4. Android -- SpannableString

    SpannableString Android通过SpannableString类来对EditText和TextView的指定文本进行处理. ForegroundColorSpan 文本颜色 priv ...

  5. Android -- Serializable和Parcelable需要注意的

    Serializable 静态变量序列化不会被保存 public class Test implements Serializable { private static final long seri ...

  6. TextEdit 只能输入数字(0-9)的限制

    MaskType="RegEx" MaskUseAsDisplayFormat="True" Mask="[0-9]*" <dxe:T ...

  7. esUtil.h中的m变量报错

    引用了OpenGL ES自带的esUtil.h, 编译的时候报错:     typedef struct     {         GLfloat m[4][4];     } ESMatrix; ...

  8. 【nodejs】理想论坛帖子下载爬虫1.07 使用request模块后稳定多了

    在1.06版本时,访问网页采用的时http.request,但调用次数多以后就问题来了. 寻找别的方案时看到了https://cnodejs.org/topic/53142ef833dbcb076d0 ...

  9. .NET 基于任务的异步模式(Task-based Asynchronous Pattern,TAP) async await

    本文内容 概述 编写异步方法 异步程序中的控制流 API 异步方法 线程 异步和等待 返回类型和参数 参考资料 下载 Demo 下载 Demo TPL 与 APM 和 EAP 结合(APM 和 EAP ...

  10. android中使用WebView请求本地网页

    使用WebView的方式请参考我的上一篇文章:android中使用WebView请求网页 这里说一下请求本地网页的方法: 本地网页应该把网页保存在src/main/assets目录下: webView ...