bzoj4919 大根堆
考虑二分求序列LIS的过程。
g[i]表示长度为i的LIS最小以多少结尾。
对于每个数,二分寻找插入的位置来更新g数组。
放到树上也是一样,额外加上一个合并儿子的过程。
发现儿子与儿子直接是互不影响的,可以直接合并。
用启发式合并set来维护这个g数组,复杂度O(nlogn^2)。
#include<iostream>
#include<cctype>
#include<cstdio>
#include<cstring>
#include<string>
#include<set>
#include<cmath>
#include<ctime>
#include<cstdlib>
#include<algorithm>
#define N 2200000
#define L 2000000
#define eps 1e-7
#define inf 1e9+7
#define ll long long
using namespace std;
inline int read()
{
char ch=0;
int x=0,flag=1;
while(!isdigit(ch)){ch=getchar();if(ch=='-')flag=-1;}
while(isdigit(ch)){x=(x<<3)+(x<<1)+ch-'0';ch=getchar();}
return x*flag;
}
struct edge
{
int to,nxt;
}e[N*2];
int num=-1,head[N];
inline void add(int x,int y)
{
e[++num]=(edge){y,head[x]};head[x]=num;
e[++num]=(edge){x,head[y]};head[y]=num;
}
int w[N];
multiset<int>s[N];
multiset<int>::iterator it;
void merge(int x,int y)//add y to x
{
if(s[x].size()<s[y].size())swap(s[x],s[y]);
while(!s[y].empty())
{
it=s[y].begin();
s[x].insert(*it);
s[y].erase(it);
}
}
void dfs(int x,int fa)
{
for(int i=head[x];i!=-1;i=e[i].nxt)
{
int to=e[i].to;
if(to==fa)continue;
dfs(to,x);merge(x,to);
}
it=s[x].lower_bound(w[x]);
if(it!=s[x].end())s[x].erase(it);
s[x].insert(w[x]);
}
int main()
{
memset(head,-1,sizeof(head));
int n=read(),x;
for(int i=1;i<=n;i++)
{
w[i]=read();
x=read();
if(i!=1)add(i,x);
}
dfs(1,1);
printf("%d",(int)s[1].size());
return 0;
}
bzoj4919 大根堆的更多相关文章
- 2021-06-14 BZOJ4919:大根堆
BZOJ4919:大根堆 Description: 题目描述 给定一棵n个节点的有根树,编号依次为1到n,其中1号点为根节点.每个点有一个权值v_i. 你需要将这棵树转化成一个大根堆.确切地说,你 ...
- BZOJ4919 大根堆(动态规划+treap+启发式合并)
一个显然的dp是设f[i][j]为i子树内权值<=j时的答案,则f[i][j]=Σf[son][j],f[i][a[i]]++,f[i][a[i]+1~n]对其取max.这样是可以线段树合并的, ...
- 【BZOJ4919】[Lydsy六月月赛]大根堆 线段树合并
[BZOJ4919][Lydsy六月月赛]大根堆 Description 给定一棵n个节点的有根树,编号依次为1到n,其中1号点为根节点.每个点有一个权值v_i. 你需要将这棵树转化成一个大根堆.确切 ...
- bzoj4919 [Lydsy1706月赛]大根堆
Description 给定一棵n个节点的有根树,编号依次为1到n,其中1号点为根节点.每个点有一个权值v_i. 你需要将这棵树转化成一个大根堆.确切地说,你需要选择尽可能多的节点,满足大根堆的性质: ...
- BZOJ4919:[Lydsy1706月赛]大根堆(set启发式合并)
Description 给定一棵n个节点的有根树,编号依次为1到n,其中1号点为根节点.每个点有一个权值v_i. 你需要将这棵树转化成一个大根堆.确切地说,你需要选择尽可能多的节点,满足大根堆的性质: ...
- 题解 「BZOJ4919 Lydsy1706月赛」大根堆
题目传送门 题目大意 给出一个 \(n\) 个点的树,每个点有权值,从中选出一些点,使得满足大根堆的性质.(即一个点的祖先节点如果选了那么该点的祖先节点的权值一定需要大于该点权值) 问能选出来的大根堆 ...
- BZOJ4919[Lydsy1706月赛]大根堆-------------线段树进阶
是不是每做道线段树进阶都要写个题解..根本不会写 Description 给定一棵n个节点的有根树,编号依次为1到n,其中1号点为根节点.每个点有一个权值v_i. 你需要将这棵树转化成一个大根堆.确切 ...
- Java实现堆排序(大根堆)
堆排序是一种树形选择排序方法,它的特点是:在排序的过程中,将array[0,...,n-1]看成是一颗完全二叉树的顺序存储结构,利用完全二叉树中双亲节点和孩子结点之间的内在关系,在当前无序区中选择关键 ...
- bzoj 4919: [Lydsy六月月赛]大根堆
Description 给定一棵n个节点的有根树,编号依次为1到n,其中1号点为根节点.每个点有一个权值v_i. 你需要将这棵树转化成一个大根堆.确切地说,你需要选择尽可能多的节点,满足大根堆的性质: ...
随机推荐
- vim 常用命令小结
1.打开多个窗口 split 上下打开窗口 vsplit 左右开打窗口 ctrl + ww 窗口之间切换 ctrl + wq 退出当前窗口 2.移动光标: 数字 0 : 将光标 ...
- linux常用命令:top 命令
top命令是Linux下常用的性能分析工具,能够实时显示系统中各个进程的资源占用状况,类似于Windows的任务管理器.下面详细介绍它的使用方法.top是 一个动态显示过程,即可以通过用户按键来不断刷 ...
- Advapi32.dll--介绍
https://blog.csdn.net/zhoujielun123456/article/details/50338147 使用方法详见:OpsTotalService
- 解决input标签placeholder属性浏览器兼容性问题的一种方法
为文本框input添加文字输入提示,H5为input提供了一个placeholder属性.在支持H5的浏览器中,用此属性设置输入提示,简单方便,但是对于IE8以下版本,都不支持placeholder属 ...
- MySQL Crash Course #09# Chapter 17. Combining Queries: UNION
INDEX UNION Rules WHERE VS. UNION UNION VS. UNION ALL Sorting Combined Query Results UNION Rules As ...
- php多进程结合Linux利器split命令实现把大文件分批高效处理
有时候会遇到这样的需求,比如log日志文件,这个文件很大,甚至上百M,需要把所有的日志拿来做统计,这时候我们如果用单进程来处理,效率会很慢.如果我们想要快速完成这项需求,我们可以利用Linux的一个利 ...
- 主攻ASP.NET MVC4.0之重生:Asp.Net MVC WebApi OData
1.新建MVC项目,安装OData Install-Package Microsoft.AspNet.WebApi.OData -Version 4.0.0 2.新建WebAPI Controller ...
- 任务调度之Timer与TimerTask配合
什么是任务调度? 在实际业务中,我们经常需要定时.定期.或者多次完成某些任务,对这些任务进行管理,就是任务调度.任务调度与多线程密切相关. 任务调度有多种方式 Timer与TimerTask配合 Ti ...
- VC 系统托盘编程,含有气泡提示
转载一:http://blog.sina.com.cn/s/blog_6acf36ee0100rxdb.html 转载二:http://blog.csdn.net/akof1314/article/d ...
- 剑指Offer——跳台阶
题目描述 一只青蛙一次可以跳上1级台阶,也可以跳上2级.求该青蛙跳上一个n级的台阶总共有多少种跳法. 思路分析 这个问题可以先从简单开始考虑,台阶只有1阶,只有1种跳法,台阶有2阶,有2种跳法:一种两 ...