x86_64的内存映射
对于x86_64来说,逻辑地址由16位选择子和64位偏移量组成(而32位时,逻辑地址由16位段选择符和32位偏移量组成),段寄存器仅仅存放选择子。CPU的分段单元(SU)执行以下操作:
[1] 先检查选择子的TI字段,以决定描述子对应的描述子保存在哪一个描述符表中。TI字段指明描述子是在GDT中(在这种情况下,分段单元从gdtr寄存器中得到GDT的线性基地址)还是在激活的LDT中(在这种情况下,分段单元从ldtr寄存器中得到LDT的线性基地址)。
[2] 从选择子的13位index字段计算描述子的地址,index字段的值乘以8(一个描述子的大小,其实就是屏蔽掉末尾那三位指示特权级的CPL和指示TI的字段),这个结果与gdtr或ldtr寄存器中的内容相加。
[3] 将对应的段描述子从内存拷贝到CPU的影子Cache中,这样,只有在选择子改变的情况下才会修改影子Cache中的内容。
[4] 把虚拟地址的偏移量与隐Cache中描述符Base字段的值相加就得到了线性地址。
虽然逻辑地址扩展到了64位,但是,现有的设计并没有完全用到这64位的空间(2^64=16EB),因为使用到如此大的空间,势必造成很大的 系统开销。AMD64在设计的时候就决定在x86_64的第一阶段,只用这64位中的低48位来做页式地址转换,高16位(48-64位)将填充第47位相同的内容(这种方式类似于符号扩展)。 如果逻辑地址不符合此规定,系统将产生异常。符合此规定的地址称为canonical form,地址的范围分为两段:0 到 00007FFF-FFFFFFFF,以及FFFF8 000-0000 0000到FFFFFFFF-FFFFFFFF,总共为256TB。 这种虚拟地址的分层结构,也为操作系统的设计带来了一定便利:可以取地址的上半段保留做为操作系统的逻辑地址空间,而低地址部分做为装载应用程序的空间, 而canonical form不允许的地址空间则做为操作系统的标志、以及特权级的标识等。当然,这样的设计在未来地址进一步扩展的时候将成为一个新的问题。
可以想象,用到48位的x86-64虚拟地址的分配机制为:
- 0-11(12)位:页内偏移;
- 12-20(9)位:由PML4来映射;
- 21-29(9)位:高一级页目录来映射(如果PS=1,则该页表项指向一个2MB的页);
- 30-38(9)位:再高一级的页目录来映射(如果PS=2,则该页表项指向一个1GB的页);
- 39-47(9)位:页目录指针表来映射。
其虚拟地址空间布局如下:
0000000000000000 - 00007fffffffffff (=47 bits) user space, different per mm
hole caused by [48:63] sign extension
ffff800000000000 - ffff80ffffffffff (=40 bits) guard hole
ffff880000000000 - ffffc7ffffffffff (=64 TB) direct mapping of all phys. memory
ffffc80000000000 - ffffc8ffffffffff (=40 bits) hole
ffffc90000000000 - ffffe8ffffffffff (=45 bits) vmalloc/ioremap space
ffffe90000000000 - ffffe9ffffffffff (=40 bits) hole
ffffea0000000000 - ffffeaffffffffff (=40 bits) virtual memory map (1TB)
... unused hole ...
ffffffff80000000 - ffffffffa0000000 (=512 MB) kernel text mapping, from phys 0
ffffffffa0000000 - fffffffffff00000 (=1536 MB) module mapping space
x86-64的长模式下,对16位以及32位代码进行了兼容,即使CPU上跑的是64位的操作系统,历史遗留的16位以及32位代码将都能够在该操作系统上运行。 由于x86-64兼容IA32的指令,所以,这些代码在这种情况下运行,基本上没有性能损耗。
在传统模式(Legacy mode)下,x86-64的CPU的工作模式跟传统的IA32没有什么两样。
x86_64的内存映射的更多相关文章
- Python之mmap内存映射模块(大文本处理)说明
背景: 通常在UNIX下面处理文本文件的方法是sed.awk等shell命令,对于处理大文件受CPU,IO等因素影响,对服务器也有一定的压力.关于sed的说明可以看了解sed的工作原理,本文将介绍通过 ...
- 【转】Python之mmap内存映射模块(大文本处理)说明
[转]Python之mmap内存映射模块(大文本处理)说明 背景: 通常在UNIX下面处理文本文件的方法是sed.awk等shell命令,对于处理大文件受CPU,IO等因素影响,对服务器也有一定的压力 ...
- 内存映射文件MemoryMappedFile使用
参考资料: http://blog.csdn.net/bitfan/article/details/4438458 所谓内存映射文件,其实就是在内存中开辟出一块存放数据的专用区域,这区域往往与硬盘上特 ...
- JAVA NIO FileChannel 内存映射文件
文件通道总是阻塞式的. 文件通道不能创建,只能通过(RandomAccessFile.FileInputStream.FileOutputStream)getChannel()获得,具有与File ...
- 使用ZwMapViewOfSection创建内存映射文件总结
标 题: [原创]使用ZwMapViewOfSection创建内存映射文件总结 作 者: 小覃 时 间: 2012-06-15,02:28:36 链 接: http://bbs.pediy.com/s ...
- C#大文件读取和查询--内存映射
笔者最近需要快速查询日志文件,文件大小在4G以上. 需求如下: 1.读取4G左右大小的文件中的指定行,程序运行占用内存不超过500M. 2.希望查询1G以内容,能控制在20s左右. 刚开始觉得这个应该 ...
- 用C#实现的内存映射
当文件过大时,无法一次性载入内存时,就需要分次,分段的载入文件 主要是用了以下的WinAPI LPVOID MapViewOfFile(HANDLE hFileMappingObject, DWORD ...
- 【转】C#大文件读取和查询--内存映射
笔者最近需要快速查询日志文件,文件大小在4G以上. 需求如下: 1.读取4G左右大小的文件中的指定行,程序运行占用内存不超过500M. 2.希望查询1G以内容,能控制在20s左右. 刚开始觉得这个应该 ...
- Atitit.病毒木马的快速扩散机制原理nio 内存映射MappedByteBuffer
Atitit.病毒木马的快速扩散机制原理nio 内存映射MappedByteBuffer 1. Java NIO(New Input/Output)1 1.1. 变更通知(因为每个事件都需要一个监听者 ...
随机推荐
- CMake Tutorial
1.最简实例 使用cmake的最简实例是由一个源程序文件生成一个可执行文件.例如由下述C++源程序文件生成可执行文件tutorial. main.cpp #include<iostream> ...
- 阿里CEO张勇公开信:把眼光从股市回到客户身上
8月25日消息,面对全球资本市场的剧烈波动,阿里巴巴集团CEO张勇今日发表致员工信,倡议全体阿里员工把眼光从股市回到客户身上,脚踏实地的服务帮助客户,为客户创造价值,继而为股东和自己创造价值. 张 ...
- bzoj 3611[Heoi2014]大工程 虚树+dp
题意: 给一棵树 每次选 k 个关键点,然后在它们两两之间 新建 C(k,2)条 新通道. 求: 1.这些新通道的代价和 2.这些新通道中代价最小的是多少 3.这些新通道中代价最大的是多少 分析:较常 ...
- SecureCRT 使用
1. 连接linux 服务器 http://www.cnblogs.com/SimonGao/p/4959274.html
- Java数据库连接--JDBC调用存储过程,事务管理和高级应用
相关链接:Jdbc调用存储过程 一.JDBC常用的API深入详解及存储过程的调用 1.存储过程的介绍 我们常用的操作数据库语言SQL语句在执行的时候要先进行编译,然后执行,而存储过程是在大型数据库系统 ...
- 记一次DG搭建过程中ORA-09925: Unable to createaudit trail file 错误
今天做Oracle DG 编写initorcl的时候,修改完以后,sqlplus就不能再登陆,一直报 ERROR: ORA-09925: Unable to createaudit trail fi ...
- session的一些方法
session的一些方法: package com.stono.servlet.listenerorder; import java.io.IOException; import java.io.Pr ...
- LinuxMint18配置Grub2默认启动操作系统
---恢复内容开始--- 之前电脑里面装了太多系统太乱了,刚好假期回家有一些空闲时间于是开始了重装计划. 现在重新弄好了,有两个系统,一个是Windows10,另一个是LinuxMint18,但是我平 ...
- Bootstrap入门(二十六)JS插件3:滚动监听
很多时候我们在浏览一些网页的时候,导航条会根据我们浏览网页的进度而发生不同的变化,这种就是滚动监听. 你的顶栏导航,添加data-spy="scroll"到您想要刺探(最典型的是这 ...
- MySQL锁详解
一.概述 数据库锁定机制简单来说就是数据库为了保证数据的一致性而使各种共享资源在被并发访问访问变得有序所设计的一种规则.对于任何一种数据库来说都需要有相应的锁定机制,所以MySQL自然也不能例外.My ...