POJ 1845 Sumdiv#质因数分解+二分
题目链接:http://poj.org/problem?id=1845
关于质因数分解,模板见:http://www.cnblogs.com/atmacmer/p/5285810.html
二分法思想:选定一个要进行比较的目标,在区间[l,r]之间不断二分,直到取到与目标相等的值。
#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
typedef long long ll;
const int N=10000;
const int MOD=9901; ll mult_mod(ll a,ll b)
{
a%=MOD;b%=MOD;
ll res=0;
while(b)
{
if(b&1)
{
res+=a;
res%=MOD;
}
a<<=1;
if(a>=MOD) a%=MOD;
b>>=1;
}
return res;
} ll pow_mod(ll x,ll n)
{
if(n==1) return x%MOD;
x%=MOD;
ll t=x,res=1;
while(n)
{
if(n&1) res=mult_mod(res,t);
t=mult_mod(t,t);
n>>=1;
}
return res;
} int prime[N+5];
int tot;
int vis[N+5]; void isPrime()
{
tot=0;
memset(vis,0,sizeof(vis));
memset(prime,0,sizeof(prime));
for(int i=2;i<=N;i++)
{
if(!vis[i])
{
prime[tot++]=i;
for(int j=i*i;j<N;j+=i)
vis[j]=1;
}
}
} ll factor[100][2];
int cnt;
//分解质因数
void getFactor(ll x)
{
cnt=0;
ll t=x;
for(int i=0;prime[i]<=t/prime[i];i++)
{
factor[cnt][1]=0;
while(t%prime[i]==0)
{
factor[cnt][0]=prime[i];
while(t%prime[i]==0)
{
factor[cnt][1]++;
t/=prime[i];
}
cnt++;
}
}
if(t!=1)
{
factor[cnt][0]=t;
factor[cnt][1]=1;
cnt++;
}
} ll sum(ll p,ll n)
{
if(p==0) return 0;
if(n==0) return 1;
if(n&1)
return ((1+pow_mod(p,n/2+1))%MOD*sum(p,n/2)%MOD)%MOD;
else
return ((1+pow_mod(p,n/2+1))%MOD*sum(p,n/2-1)+pow_mod(p,n/2)%MOD)%MOD;
} int main()
{
int a,b;
isPrime();
while(~scanf("%d%d",&a,&b))
{
getFactor(a);
ll ans=1;
for(int i=0;i<cnt;i++)
{
ans*=(sum(factor[i][0],b*factor[i][1])%MOD);
ans%=MOD;
}
printf("%I64d\n",ans);
}
return 0;
}
POJ 1845 Sumdiv#质因数分解+二分的更多相关文章
- POJ 1845 Sumdiv [素数分解 快速幂取模 二分求和等比数列]
传送门:http://poj.org/problem?id=1845 大致题意: 求A^B的所有约数(即因子)之和,并对其取模 9901再输出. 解题基础: 1) 整数的唯一分解定理: 任意正整数都有 ...
- poj 1845 POJ 1845 Sumdiv 数学模板
筛选法+求一个整数的分解+快速模幂运算+递归求计算1+p+p^2+````+p^nPOJ 1845 Sumdiv求A^B的所有约数之和%9901 */#include<stdio.h>#i ...
- POJ - 1845 Sumdiv(分治)
题意:求$A^{B}$的所有约数之和$mod\ 9901$ 思路:由结论有,一个数$n$进行质因数分解得到$n={p_{1}}^{c_{1}} * {p_{2}}^{c_{2}} *...* {p_{ ...
- POJ 1845 Sumdiv 【二分 || 逆元】
任意门:http://poj.org/problem?id=1845. Sumdiv Time Limit: 1000MS Memory Limit: 30000K Total Submissions ...
- POJ 1845 Sumdiv(因子分解+快速幂+二分求和)
题意:给你A,B,让求A^B所有的因子和模上9901 思路:A可以拆成素因子的乘积: A = p1^x1 * p2^x2 *...* pn^xn 那么A^B = p1^(B*x1) * p2^(B*x ...
- POJ 1845 Sumdiv (求某个数的所有正因子的和)
题意: 求A^B的所有正因子的和,最后模9901的结果. 思路: 若对一个数n进行素数分解,n=p1^a1*p2^a2*p3^a3*...*pk^ak那么n的所有正因子之和sum=(1+p1+...+ ...
- poj 1845 Sumdiv 约数和定理
Sumdiv 题目连接: http://poj.org/problem?id=1845 Description Consider two natural numbers A and B. Let S ...
- poj 1845 Sumdiv (等比求和+逆元)
题目链接:http://poj.org/problem?id=1845 题目大意:给出两个自然数a,b,求a^b的所有自然数因子的和模上9901 (0 <= a,b <= 50000000 ...
- POJ 1845 Sumdiv 【逆元】
题意:求A^B的所有因子之和 很容易知道,先把分解得到,那么得到,那么 的所有因子和的表达式如下 第一种做法是分治求等比数列的和 用递归二分求等比数列1+pi+pi^2+pi^3+...+pi^n: ...
随机推荐
- 弹框ESC键退出
$(document).keyup(function(event){ switch(event.keyCode) { case 27: alert("ESC"); case 96: ...
- python 数据聚合与分组
前面讲完了字符处理,但对数据进行整体性的聚合运算以及分组操作也是数据分析的重要内容. 通过数据的聚合与分组,我们能更容易的发现隐藏在数据中的规律. 数据分组 数据的分组核心思想是:拆分-组织-合并 首 ...
- 《数学分析Analysis》の 学习笔记
>> 皮亚诺(Peano)公理 定义自然数 公理2.1 0是一个自然数. 公理2.2 若n是自然数, 则n++也是自然数. 公理2.3 0不是任何自然数的后继, 即对于每个自然 ...
- java程序基础
- C# IDisposable的理解
C#里可以嵌入非托管代码,这就涉及到了这些代码资源的释放.以前总是看到别人的代码里那么写,也没有好好想想为什么,今天看了书,总结一下. 资源释放分为两种: 托管的 非托管的 两者的释放方式不一致: 没 ...
- 敏捷开发(六)- SCRUM全员会议
本文主要是为了检测你对SCRUM 全员会议的了解和使用程度,通过本文你可以检测一下 1.你们的SCRUM 全员会议的过程和步骤 2.SCRUM 全员会议的输出结果 一.会议目的 组成团 ...
- java中的反编译
使用JD-GUI工具 支持mac os 和 windows 地址为:http://jd.benow.ca
- 子查询 此处该用AND 而不是 WHERE
条件:有一张账户表,一张订单表. 需求:求出所有role = 2 即客服人员,所有操作成功的订单数量.结果:能查出所有的客服人员名称,以及操作的订单数量(关键点在于,没有操作过订单,则数量显示为0) ...
- Java:注解(Annotation)自定义注解入门
转载地址:http://www.cnblogs.com/peida/archive/2013/04/24/3036689.html 要深入学习注解,我们就必须能定义自己的注解,并使用注解,在定义自己的 ...
- HashMap按键排序和按值排序
对map集合进行排序 今天做统计时需要对X轴的地区按照地区代码(areaCode)进行排序,由于在构建XMLData使用的map来进行数据统计的,所以在统计过程中就需要对map进行排序. 一.简单 ...