题目链接:http://poj.org/problem?id=1845

关于质因数分解,模板见:http://www.cnblogs.com/atmacmer/p/5285810.html

二分法思想:选定一个要进行比较的目标,在区间[l,r]之间不断二分,直到取到与目标相等的值。

#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
typedef long long ll;
const int N=10000;
const int MOD=9901; ll mult_mod(ll a,ll b)
{
a%=MOD;b%=MOD;
ll res=0;
while(b)
{
if(b&1)
{
res+=a;
res%=MOD;
}
a<<=1;
if(a>=MOD) a%=MOD;
b>>=1;
}
return res;
} ll pow_mod(ll x,ll n)
{
if(n==1) return x%MOD;
x%=MOD;
ll t=x,res=1;
while(n)
{
if(n&1) res=mult_mod(res,t);
t=mult_mod(t,t);
n>>=1;
}
return res;
} int prime[N+5];
int tot;
int vis[N+5]; void isPrime()
{
tot=0;
memset(vis,0,sizeof(vis));
memset(prime,0,sizeof(prime));
for(int i=2;i<=N;i++)
{
if(!vis[i])
{
prime[tot++]=i;
for(int j=i*i;j<N;j+=i)
vis[j]=1;
}
}
} ll factor[100][2];
int cnt;
//分解质因数
void getFactor(ll x)
{
cnt=0;
ll t=x;
for(int i=0;prime[i]<=t/prime[i];i++)
{
factor[cnt][1]=0;
while(t%prime[i]==0)
{
factor[cnt][0]=prime[i];
while(t%prime[i]==0)
{
factor[cnt][1]++;
t/=prime[i];
}
cnt++;
}
}
if(t!=1)
{
factor[cnt][0]=t;
factor[cnt][1]=1;
cnt++;
}
} ll sum(ll p,ll n)
{
if(p==0) return 0;
if(n==0) return 1;
if(n&1)
return ((1+pow_mod(p,n/2+1))%MOD*sum(p,n/2)%MOD)%MOD;
else
return ((1+pow_mod(p,n/2+1))%MOD*sum(p,n/2-1)+pow_mod(p,n/2)%MOD)%MOD;
} int main()
{
int a,b;
isPrime();
while(~scanf("%d%d",&a,&b))
{
getFactor(a);
ll ans=1;
for(int i=0;i<cnt;i++)
{
ans*=(sum(factor[i][0],b*factor[i][1])%MOD);
ans%=MOD;
}
printf("%I64d\n",ans);
}
return 0;
}

POJ 1845 Sumdiv#质因数分解+二分的更多相关文章

  1. POJ 1845 Sumdiv [素数分解 快速幂取模 二分求和等比数列]

    传送门:http://poj.org/problem?id=1845 大致题意: 求A^B的所有约数(即因子)之和,并对其取模 9901再输出. 解题基础: 1) 整数的唯一分解定理: 任意正整数都有 ...

  2. poj 1845 POJ 1845 Sumdiv 数学模板

    筛选法+求一个整数的分解+快速模幂运算+递归求计算1+p+p^2+````+p^nPOJ 1845 Sumdiv求A^B的所有约数之和%9901 */#include<stdio.h>#i ...

  3. POJ - 1845 Sumdiv(分治)

    题意:求$A^{B}$的所有约数之和$mod\ 9901$ 思路:由结论有,一个数$n$进行质因数分解得到$n={p_{1}}^{c_{1}} * {p_{2}}^{c_{2}} *...* {p_{ ...

  4. POJ 1845 Sumdiv 【二分 || 逆元】

    任意门:http://poj.org/problem?id=1845. Sumdiv Time Limit: 1000MS Memory Limit: 30000K Total Submissions ...

  5. POJ 1845 Sumdiv(因子分解+快速幂+二分求和)

    题意:给你A,B,让求A^B所有的因子和模上9901 思路:A可以拆成素因子的乘积: A = p1^x1 * p2^x2 *...* pn^xn 那么A^B = p1^(B*x1) * p2^(B*x ...

  6. POJ 1845 Sumdiv (求某个数的所有正因子的和)

    题意: 求A^B的所有正因子的和,最后模9901的结果. 思路: 若对一个数n进行素数分解,n=p1^a1*p2^a2*p3^a3*...*pk^ak那么n的所有正因子之和sum=(1+p1+...+ ...

  7. poj 1845 Sumdiv 约数和定理

    Sumdiv 题目连接: http://poj.org/problem?id=1845 Description Consider two natural numbers A and B. Let S ...

  8. poj 1845 Sumdiv (等比求和+逆元)

    题目链接:http://poj.org/problem?id=1845 题目大意:给出两个自然数a,b,求a^b的所有自然数因子的和模上9901 (0 <= a,b <= 50000000 ...

  9. POJ 1845 Sumdiv 【逆元】

    题意:求A^B的所有因子之和 很容易知道,先把分解得到,那么得到,那么 的所有因子和的表达式如下 第一种做法是分治求等比数列的和  用递归二分求等比数列1+pi+pi^2+pi^3+...+pi^n: ...

随机推荐

  1. ListView添加节点

    ListView插入节点的流程 当ListView控件的样式被设置成report时,ListView控件实际上是分为两个部分, 一部分是Column, 这个部分是用来显示ListView的每一列的标题 ...

  2. MFC中CListCtrl说明

    转载:http://blog.csdn.NET/lhy2199/article/details/5177032 listctrl默认view 风格为report CListCtrl类封装"列 ...

  3. wpf ProgressBar使用

    wpf     progressBar使用起来有些麻烦,直接设置value的值还不行 而是通过委托来执行setValue方法 //Create a Delegate that matches the ...

  4. Ubuntu 16 04 安装KVM

    apt-get install qemu-kvm ubuntu-vm-builder bridge-utils http://www.linuxidc.com/Linux/2016-06/132188 ...

  5. html css jquery 回到顶部按钮

    今天做了个回到顶部的功能,在这里记录一下,有需要可以拿去试试! CSS部分,很简单就一个class /*回到顶部*/ .back-top { position: fixed; right: 15px; ...

  6. filter怎么在程序里写,不用再web.xml中配置

  7. hdu 3045 Picnic Cows(斜率优化DP)

    题目链接:hdu 3045 Picnic Cows 题意: 有n个奶牛分别有对应的兴趣值,现在对奶牛分组,每组成员不少于t, 在每组中所有的成员兴趣值要减少到一致,问总共最少需要减少的兴趣值是多少. ...

  8. zookeeper(2)-curator

    一.Curator介绍 zookeeper的提交人也说过,curator对于zookeeper而言就像是guava对于java差不多,更加优雅高效. 而且之前的zookeeper原生API,往往因为2 ...

  9. iPhone doesn’t support any of GongShangJ.app’s architectures. You can add iPhone’s armv7s architectu

    iPhone doesn't support any of GongShangJ.app's architectures. You can add iPhone's armv7s architectu

  10. ES6(一)let const

    1.let 声明变量 let和var区别: let 只在变量声明时所在的代码块内有效 let不允许在同一作用域内重复声明变量 let不存在变量提升 const: 也是声明一个只读常量,一旦声明,常量的 ...