Counting Intersections

Time Limit: 12000/6000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)

Problem Description
Given some segments which are paralleled to the coordinate axis. You need to count the number of their intersection.

The input data guarantee that no two segments share the same endpoint, no covered segments, and no segments with length 0.

 
Input
The first line contains an integer T, indicates the number of test case.

The
first line of each test case contains a number n(1<=n<=100000),
the number of segments. Next n lines, each with for integers, x1, y1,
x2, y2, means the two endpoints of a segment. The absolute value of the
coordinate is no larger than 1e9.

 
Output
For each test case, output one line, the number of intersection.
 
Sample Input
2
4
1 0 1 3
2 0 2 3
0 1 3 1
0 2 3 2
4
0 0 2 0
3 0 3 2
3 3 1 3
0 3 0 2
 
Sample Output
4
0
分析:对于横向线段只保留两个端点并记录类型,对竖向线段保留整个线段;
   离散化并排序,遍历竖向线段,对横向端点树状数组更新;
代码:
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cmath>
#include <algorithm>
#include <climits>
#include <cstring>
#include <string>
#include <set>
#include <map>
#include <queue>
#include <stack>
#include <vector>
#include <list>
#define rep(i,m,n) for(i=m;i<=n;i++)
#define rsp(it,s) for(set<int>::iterator it=s.begin();it!=s.end();it++)
#define mod 1000000007
#define inf 0x3f3f3f3f
#define vi vector<int>
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define ll long long
#define pi acos(-1.0)
#define pii pair<int,int>
#define Lson L, mid, rt<<1
#define Rson mid+1, R, rt<<1|1
const int maxn=2e5+;
const int dis[][]={{,},{-,},{,-},{,}};
using namespace std;
ll gcd(ll p,ll q){return q==?p:gcd(q,p%q);}
ll qpow(ll p,ll q){ll f=;while(q){if(q&)f=f*p;p=p*p;q>>=;}return f;}
int n,m,k,t,x[maxn],y[maxn],p[maxn],xcnt,ycnt,id,idx;
ll ans;
multiset<int>s;
struct node
{
int x,low,high;
bool operator<(const node&p)const
{
return x<p.x;
}
}a[maxn];
struct node1
{
int x,y,type;
bool operator<(const node1&p)const
{
return x<p.x;
}
}g[maxn];
int get(int x)
{
int sum=;
for(int i=x;i;i-=(i&(-i)))
sum+=p[i];
return sum;
}
void add(int x,int y)
{
for(int i=x;i<=maxn-;i+=(i&(-i)))
p[i]+=y;
}
int main()
{
int i,j;
scanf("%d",&t);
while(t--)
{
xcnt=ycnt=id=idx=;
ans=;
memset(p,,sizeof(p));
scanf("%d",&n);
rep(i,,n)
{
int b,c,d,e;
scanf("%d%d%d%d",&b,&c,&d,&e);
if(c>e)swap(c,e);
if(b>d)swap(b,d);
if(b==d)
{
x[++xcnt]=a[++id].x=b;
y[++ycnt]=a[id].low=c;
y[++ycnt]=a[id].high=e;
}
else
{
x[++xcnt]=b;
x[++xcnt]=d;
y[++ycnt]=c;
g[++idx].x=b;
g[idx].y=c;
g[idx].type=;
g[++idx].x=d;
g[idx].y=e;
g[idx].type=;
}
}
sort(x+,x+xcnt+);
sort(y+,y+ycnt+);
sort(a+,a+id+);
sort(g+,g+idx+);
int num1=unique(x+,x+xcnt+)-x-;
int num2=unique(y+,y+ycnt+)-y-;
rep(i,,id)
{
a[i].x=lower_bound(x+,x+num1+,a[i].x)-x;
a[i].low=lower_bound(y+,y+num2+,a[i].low)-y;
a[i].high=lower_bound(y+,y+num2+,a[i].high)-y;
}
rep(i,,idx)
{
g[i].x=lower_bound(x+,x+num1+,g[i].x)-x;
g[i].y=lower_bound(y+,y+num2+,g[i].y)-y;
}
int now=;
rep(i,,id)
{
while(now<=idx&&g[now].x<=a[i].x)
{
if(g[now].type==)add(g[now].y,);
else {
if(g[now].x!=a[i].x)
add(g[now].y,-);
else s.insert(g[now].y);
}
now++;
}
ans+=get(a[i].high)-get(a[i].low-);
for(int x:s)add(x,-);
s.clear();
}
printf("%lld\n",ans);
}
//system("Pause");
return ;
}

Counting Intersections的更多相关文章

  1. hdu 5862 Counting Intersections

    传送门:hdu 5862 Counting Intersections 题意:对于平行于坐标轴的n条线段,求两两相交的线段对有多少个,包括十,T型 官方题解:由于数据限制,只有竖向与横向的线段才会产生 ...

  2. HDU 5862 Counting Intersections (树状数组)

    Counting Intersections 题目链接: http://acm.split.hdu.edu.cn/showproblem.php?pid=5862 Description Given ...

  3. HDU 5862 Counting Intersections(离散化+树状数组)

    HDU 5862 Counting Intersections(离散化+树状数组) 题目链接http://acm.split.hdu.edu.cn/showproblem.php?pid=5862 D ...

  4. HDU 5862 Counting Intersections 扫描线+树状数组

    题目链接: http://acm.split.hdu.edu.cn/showproblem.php?pid=5862 Counting Intersections Time Limit: 12000/ ...

  5. HDU 5862 Counting Intersections(离散化 + 树状数组)

    Counting Intersections Time Limit: 12000/6000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/ ...

  6. Hdu 5862 Counting Intersections(有n条线段,每一条线段都是平行于x轴或者y轴,问有多少个交点+树状数组区间求和单点跟新)

    传送门:Hdu 5862 Counting Intersections 题意:有n条线段,每一条线段都是平行于x轴或者y轴,问有多少个交点 分析: 基本的操作流程是:先将所有的线段按照横树坐标x按小的 ...

  7. hdu-5862 Counting Intersections(线段树+扫描线)

    题目链接: Counting Intersections Time Limit: 12000/6000 MS (Java/Others)     Memory Limit: 65536/65536 K ...

  8. 2016暑假多校联合---Counting Intersections

    原题链接 Problem Description Given some segments which are paralleled to the coordinate axis. You need t ...

  9. 【HDU5862】Counting Intersections

    题意 有n条线段,且都平行于坐标轴.对于每条线段,给出两个端点的坐标.问一共有多少个线段的交点. 分析 最最简单的扫描法了.用线段树或者树状数组都可以. 由题目可知,线段只有两种,要么平行于x轴要么平 ...

随机推荐

  1. find unique values in an array

    Problem: given an array that contains duplicates (except one value), find the one value that does no ...

  2. mysql数据库参数innodb_buffer_pool_size和max_connections

    接到报故,查看mysql数据库以下参数 1.innodb_buffer_pool_size 2.max_connections 该参数定义了数据缓冲区buffer pool大小,类似于oracle的d ...

  3. Docker学习笔记 — Docker私有仓库搭建【转载】

    标签: Docker 2015-03-10 21:08 24190人阅读 评论(0) 收藏 举报  分类: Docker(26)    目录(?)[+]   和Mavan的管理一样,Dockers不仅 ...

  4. bmp文件格式详细解析

    先区分几个概念:16色和16位色一样吗? 不一样! 颜色位数,即是用多少位字节表示的值,每一位可以表示0和1两值.通常图片的颜色深度,简称色深,就是用位数来表示的,所以,我通常会看到8位色,16位色, ...

  5. byte数组与int,long,short,byte转换 (转载)

    byte数组和short数组转换 public short bytesToShort(byte[] bytes) { return ByteBuffer.wrap(bytes).order(ByteO ...

  6. ASP.NET网站限制访问频率

    最近做了一个免费发短信的小网站(http://freesms.cloudapp.net/),但发现最近有人破解了我的验证码,以每3秒/条的速度用我的短信服务来发他的广告.更换验证码程序和过滤关键字只是 ...

  7. iOS View 模糊效果(毛玻璃)

    iOS View 模糊效果(毛玻璃)   相关资料 http://stackoverflow.com/questions/18404907/using-gpuimage-to-recreate-ios ...

  8. 转 vi 技巧和诀窍:令人刮目相看的 10 个超酷命令

    for ksh vi 编辑器的许多选项可以控制编辑会话的外观和感觉.使用 :set 命令修改 vi 中的会话设置.按 Escape 键进入命令模式之后,可以使用 :set all 命令显示选项和设置的 ...

  9. hdu1950 Bridging signals 最长递增子序列

    用一个数组记下递增子序列长度为i时最小的len[i],不断更新len数组,最大的i即为最长递增子序列的长度 #include<cstdio> #include<algorithm&g ...

  10. java基础增强

    Eclipse使用: java Compile配置的是java编译环境 java Build path配置的是java运行环境 运行环境的版本必须高于编译环境的版本.否则报错 工程上 右键--prop ...