题目链接

Problem Description
Given a two-dimensional array of positive and negative integers, a sub-rectangle is any contiguous sub-array of size 1 x 1 or greater located within the whole array. The sum of a rectangle is the sum of all the elements in that rectangle. In this problem the sub-rectangle with the largest sum is referred to as the maximal sub-rectangle.

As an example, the maximal sub-rectangle of the array:

0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2

is in the lower left corner:

9 2
-4 1
-1 8

and has a sum of 15.

 
Input
The input consists of an N x N array of integers. The input begins with a single positive integer N on a line by itself, indicating the size of the square two-dimensional array. This is followed by N 2 integers separated by whitespace (spaces and newlines). These are the N 2 integers of the array, presented in row-major order. That is, all numbers in the first row, left to right, then all numbers in the second row, left to right, etc. N may be as large as 100. The numbers in the array will be in the range [-127,127].
 
Output
Output the sum of the maximal sub-rectangle.
 
Sample Input
4
0 -2 -7 0 9 2 -6 2
-4 1 -4 1
-1
8 0 -2
 
Sample Output
15

题解:属于动态规划,不过可以暴力水过,列举所有可能找出最大和即可。

先求出前缀和,把数组变成第n列是前n列的和,这样不用每次列举的时候都求和。

然后两个for循环列举列,两个for循环列举行,具体还是看代码吧。

#include <cstdio>
#include <iostream>
#include <string>
#include <sstream>
#include <cstring>
#include <stack>
#include <queue>
#include <algorithm>
#include <cmath>
#include <map>
#define PI acos(-1.0)
#define ms(a) memset(a,0,sizeof(a))
#define msp memset(mp,0,sizeof(mp))
#define msv memset(vis,0,sizeof(vis))
using namespace std;
//#define LOCAL
int main()
{
#ifdef LOCAL
freopen("in.txt", "r", stdin);
#endif // LOCAL
ios::sync_with_stdio(false);
int mp[][];
int n;
while(cin>>n)
{msp;
for(int i=; i<n; i++)
for(int j=; j<n; j++)
{
cin>>mp[i][j];
if(j!=)mp[i][j]=mp[i][j]+mp[i][j-];
}
int cnt=,maxx=-1e9;
for(int x1=; x1<n; x1++)
for(int x2=x1; x2<n; x2++)
{
for(int y1=; y1<n; y1++)
{cnt=;
for(int y2=y1; y2<n; y2++)
{
if(x1!=x2)cnt+=mp[y2][x2]-mp[y2][x1];
else cnt+=mp[y2][x2];
maxx=max(maxx,cnt);
}}
}
printf("%d\n",maxx);}
return ;
}

HDU 1081 To The Max(动态规划)的更多相关文章

  1. hdu 1081 To The Max(dp+化二维为一维)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1081 To The Max Time Limit: 2000/1000 MS (Java/Others ...

  2. HDU 1081 To The Max【dp,思维】

    HDU 1081 题意:给定二维矩阵,求数组的子矩阵的元素和最大是多少. 题解:这个相当于求最大连续子序列和的加强版,把一维变成了二维. 先看看一维怎么办的: int getsum() { ; int ...

  3. HDU 1081 To the Max 最大子矩阵(动态规划求最大连续子序列和)

    Description Given a two-dimensional array of positive and negative integers, a sub-rectangle is any ...

  4. dp - 最大子矩阵和 - HDU 1081 To The Max

    To The Max Problem's Link: http://acm.hdu.edu.cn/showproblem.php?pid=1081 Mean: 求N*N数字矩阵的最大子矩阵和. ana ...

  5. Hdu 1081 To The Max

    To The Max Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total ...

  6. URAL 1146 Maximum Sum & HDU 1081 To The Max (DP)

    点我看题目 题意 : 给你一个n*n的矩阵,让你找一个子矩阵要求和最大. 思路 : 这个题都看了好多天了,一直不会做,今天娅楠美女给讲了,要转化成一维的,也就是说每一列存的是前几列的和,也就是说 0 ...

  7. ACM HDU 1081 To The Max

     To The Max Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) To ...

  8. hdu 1081 To The Max(二维压缩的最大连续序列)(最大矩阵和)

    Problem Description Given a two-dimensional array of positive and negative integers, a sub-rectangle ...

  9. HDU 1081 To The Max (dp)

    题目链接 Problem Description Given a two-dimensional array of positive and negative integers, a sub-rect ...

随机推荐

  1. web 服务器

    作为一个跨专业转行的我来说,对后台一团浆糊,最近在看php,学的进度比较慢 (1)ApacheApache是世界使用排名第一的Web服务器软件.它可以运行在几乎所有广泛使用的计算机平台上.Apache ...

  2. zabbix 布署实践【1 server安装】

    通过openstack环境,开通了2台只有根分区的虚拟机,   目的是为了监控公司所有的物理机,网络设备,虚拟机,总计300个台以上,推荐配置,zabbix官方文档是有给出指引的   环境:CentO ...

  3. MyBatis学习-映射文件标签篇(select、resultMap)

    MyBatis 真正的核心在映射文件中.比直接使用 JDBC 节省95%的代码.而且将 SQL 语句独立在 Java 代码之外,可以进行更为细致的 SQL 优化. 一. 映射文件的顶级元素 selec ...

  4. 来看看CBIS 2017中国(上海)大数据产业创新峰会有哪些大师出席

    CBIS 2017中国(上海)大数据产业创新峰会,围绕"数据+产业.企业+数据.技术+人才.品牌+市场.应用+发展"相继展开话题讨论. CBIS 2017中国(上海)大数据产业创新 ...

  5. PHP字符串转义

    与PHP字符串转义相关的配置和函数如下: 1.magic_quotes_runtime 2.magic_quotes_gpc 3.addslashes()和stripslashes() 4.mysql ...

  6. centos7 搭建elk

    CentOS 7.x安装ELK(Elasticsearch+Logstash+Kibana)  云计算 Aug 162015 第一次听到ELK,是新浪的@ARGV 介绍内部使用ELK的情况和场景,当时 ...

  7. how many different bst given n nodes?

    Reference: http://stackoverflow.com/questions/3042412/with-n-no-of-nodes-how-many-different-binary-a ...

  8. CNN计算过程

  9. C# XML配置文件读写类(用于程序配置保存)

    调用方式 //初始化并指定文件路径 XmlConfigUtil util = new XmlConfigUtil("C:\\1.xml"); //写入要保存的值以及路径(Syste ...

  10. drupal7 开发自定义上传、下载模块的上传功能

    关键点有两个:1.在页面上显示出上传的控件,2.代码实现文件上传到服务器的功能 一.显示控件: 先来看关键点1: 实现页面显示出上传控件, 关键代码: $form['my_file_field'] = ...