hdu 5187 高速幂高速乘法
http://acm.hdu.edu.cn/showproblem.php?pid=5187
zhx thinks the ith problem's
difficulty is i.
He wants to arrange these problems in a beautiful way.
zhx defines a sequence {ai} beautiful
if there is an i that
matches two rules below:
1: a1..ai are
monotone decreasing or monotone increasing.
2: ai..an are
monotone decreasing or monotone increasing.
He wants you to tell him that how many permutations of problems are there if the sequence of the problems' difficulty is beautiful.
zhx knows that the answer may be very huge, and you only need to tell him the answer module p.
Seek EOF as
the end of the file.
For each case, there are two integers n and p separated
by a space in a line. (1≤n,p≤1018)
2 233
3 5
2
1HintIn the first case, both sequence {1, 2} and {2, 1} are legal.
In the second case, sequence {1, 2, 3}, {1, 3, 2}, {2, 1, 3}, {2, 3, 1}, {3, 1, 2}, {3, 2, 1} are legal, so the answer is 6 mod 5 = 1
/**
hdu 5187 高速幂高速乘法
题目大意:(转)数字1~n,按某种顺序排列。且满足下列某一个条件:(1)a1~ai递增,ai~an递减(2)a1~ai递减,ai~an递增。
问有多少种不同的排列。
解题思路:首先是所有递减或所有递增各一种;另外就是满足上列两个条件的情况了。要想满足条件(1)那就仅仅能把最大的n放在i位置,
共同拥有C(1,n-1)+C(2。n-1)+。。。 +C(n-2,n-1)即2^(n-1)-2;条件(2)与(1)同样,所以共同拥有(2^(n-1)-2)*2+2=2^n-2.
**/
#include <stdio.h>
#include <string.h>
#include <algorithm>
#include <iostream>
using namespace std;
typedef long long LL; LL n,p; LL qui_mul(LL x,LL m)///高速乘法
{
LL re=0;
while(m)
{
if(m&1)
{
re=(re+x)%p;
}
x=(x+x)%p;
m>>=1;
}
return re;
} LL qui_pow(LL a,LL n)///高速幂
{
LL ret=1;
LL tem=a%p;
while(n)
{
if(n%1)ret=qui_mul(ret,temp)%p;
temp=qui_mul(temp,temp)%p;
n>>=1;
}
return ret;
} int main()
{
while(~scanf("%I64d%I64d",&n,&p))
{
if(n==1)
{
if(p==1)
printf("0\n");
else
printf("1\n");
}
printf("%I64d\n",(qui_mul(2,n)-2)%p);
}
return 0;
}
hdu 5187 高速幂高速乘法的更多相关文章
- HDU - 5187 - zhx's contest (高速幂+高速乘)
zhx's contest Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others) To ...
- [POJ 3150] Cellular Automaton (矩阵高速幂 + 矩阵乘法优化)
Cellular Automaton Time Limit: 12000MS Memory Limit: 65536K Total Submissions: 3048 Accepted: 12 ...
- hdu 5187 快速幂 + 快速乘 值得学习
就是以那个ai为分水岭,左边和右边都分别是单调增或单调减如图 就这四种情况,其中头两种总共就是两个序列,也就是从头到尾递增和从头到尾递减. 后两种方式就是把序列中德数分 ...
- hdu 4704 Sum (整数和分解+高速幂+费马小定理降幂)
题意: 给n(1<n<),求(s1+s2+s3+...+sn)mod(1e9+7). 当中si表示n由i个数相加而成的种数,如n=4,则s1=1,s2=3. ...
- hdu 5318 The Goddess Of The Moon 矩阵高速幂
链接:http://acm.hdu.edu.cn/showproblem.php?pid=5318 The Goddess Of The Moon Time Limit: 6000/3000 MS ( ...
- hdu 3221 Brute-force Algorithm(高速幂取模,矩阵高速幂求fib)
http://acm.hdu.edu.cn/showproblem.php?pid=3221 一晚上搞出来这么一道题..Mark. 给出这么一个程序.问funny函数调用了多少次. 我们定义数组为所求 ...
- hdu 4965 Fast Matrix Calculation(矩阵高速幂)
题目链接.hdu 4965 Fast Matrix Calculation 题目大意:给定两个矩阵A,B,分别为N*K和K*N. 矩阵C = A*B 矩阵M=CN∗N 将矩阵M中的全部元素取模6,得到 ...
- HDU 1575 Tr A(矩阵高速幂)
题目地址:HDU 1575 矩阵高速幂裸题. 初学矩阵高速幂.曾经学过高速幂.今天一看矩阵高速幂,原来其原理是一样的,这就好办多了.都是利用二分的思想不断的乘.仅仅只是把数字变成了矩阵而已. 代码例如 ...
- HDU 2256 Problem of Precision(矩阵高速幂)
题目地址:HDU 2256 思路: (sqrt(2)+sqrt(3))^2*n=(5+2*sqrt(6))^n; 这时要注意到(5+2*sqrt(6))^n总能够表示成an+bn*sqrt(6); a ...
随机推荐
- 通过cl_dd_document来实现在ALV中输出标题头
*&---------------------------------------------------------------------* *& Report ZTEST_LIN ...
- fedora 搭建pptp vpn server
1 首先去sourceforge上下载pptpd的源码 http://sourceforge.net/projects/poptop/files/?source=navbar 2 对源码进行编译 ./ ...
- HTTP数据包头解析(简单清楚)
[转]HTTP请求模型和头信息参考 参考: http://blog.csdn.net/baggio785/archive/2006/04/13/661410.aspx模型: http://blog.c ...
- 14.1.1 InnoDB as the Default MySQL Storage Engine
14.1 Introduction to InnoDB 14.1.1 InnoDB as the Default MySQL Storage Engine 14.1.2 Checking InnoDB ...
- TVS參数具体解释及选型应用
一.首先了解TVS管的參数,我们以littelfuse的5.0SMDJ系列为例. watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvbGcybGg=/font/ ...
- 【状态DP】 HDU 1074 Doing Homework
原题直通车:HDU 1074 Doing Homework 题意:有n门功课需要完成,每一门功课都有时间期限t.完成需要的时间d,如果完成的时间走出时间限制,就会被减 (d-t)个学分.问:按怎样 ...
- NIO框架之MINA源码解析(转)
http://blog.csdn.net/column/details/nio-mina-source.html http://blog.csdn.net/chaofanwei/article/det ...
- 编写自己的单点登录(SSO)服务
王昱 yuwang881@gmail.com 博客地址http://yuwang881.blog.sohu.com 摘要:单点登录(SSO)的技术被越来越广泛地运用到各个领域的软件系统其中.本文从 ...
- 推动Common Lisp的实际应用
推动Common Lisp的实际应用 推动Common Lisp的实际应用
- 利用jquery+iframe做一个ajax上传效果
以下是自学it网--中级班上课笔记 网址:www.zixue.it html页面 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict ...