Description

对于一个数列{ai},如果有i<j且ai>aj,那么我们称ai与aj为一对逆序对数。若对于任意一个由1~n自然数组成的
数列,可以很容易求出有多少个逆序对数。那么逆序对数为k的这样自然数数列到底有多少个?

Input

第一行为两个整数n,k。

Output

写入一个整数,表示符合条件的数列个数,由于这个数可能很大,你只需输出该数对10000求余数后的结果。

Sample Input

4 1

Sample Output

3

样例说明:
下列3个数列逆序对数都为1;分别是1 2 4 3 ;1 3 2 4 ;2 1 3 4;
100%的数据 n<=1000,k<=1000

Solution

在机房看听了一上午的World Final……
很容易设计出状态f[i][j]表示i个数有j个逆序对的方案数
假设当前放了i-1个数,该放第i个数了。
因为第i个数是最大的,所以将其放到队列最右边可以额外产生0个逆序对,放到最左边可额外产生i-1个
故放第i个数可以增加0~i-1个逆序对
那么f[i][j]=sigma(f[i-1][k]),其中max(0,j-i+1)<=k<=j
很容易写出一个n^3的暴力

Code

 #include<iostream>
#include<cstring>
#include<cstdio>
#define N (1000+10)
using namespace std;
int f[N][N],n,m;
int main()
{
scanf("%d%d",&n,&m);
f[][]=;
for (int i=; i<=n; ++i)
for (int j=; j<=m; ++j)
for (int k=max(,j-i+); k<=j; ++k)
(f[i][j]+=f[i-][k])%=;
printf("%d",f[n][m]);
}

然而n^3暴力肯定过不了1000的。不过有90。
我们发现暴力的第三重循环只是查询f[i-1][]的一段,
我们只需要一边DP一边计算前缀和,那么就可以用前缀和优化掉第三重循环了。

 #include<iostream>
#include<cstring>
#include<cstdio>
#define N (1000+10)
using namespace std;
int f[N][N],sum[N][N],n,m;
int main()
{
scanf("%d%d",&n,&m);
for (int i=; i<=m; ++i)
sum[][i]=;
for (int i=; i<=n; ++i)
for (int j=; j<=m; ++j)
{
f[i][j]=(j-i>=) ? (sum[i-][j]-sum[i-][j-i]+)% : sum[i-][j];
sum[i][j]=(sum[i][j-]+f[i][j])%;
}
printf("%d",f[n][m]);
}

BZOJ2431:[HAOI2009]逆序对数列(DP,差分)的更多相关文章

  1. [bzoj2431][HAOI2009][逆序对数列] (dp计数)

    Description 对于一个数列{ai},如果有i<j且ai>aj,那么我们称ai与aj为一对逆序对数.若对于任意一个由1~n自然数组成的 数列,可以很容易求出有多少个逆序对数.那么逆 ...

  2. [BZOJ2431][HAOI2009]逆序对数列(DP)

    从小到大加数,根据加入的位置转移,裸的背包DP. #include<cstdio> #include<cstring> #include<algorithm> #d ...

  3. BZOJ2431 HAOI2009 逆序对数列 【DP】*

    BZOJ2431 HAOI2009 逆序对数列 Description 对于一个数列ai{a_i}ai​,如果有i<j且ai>aja_i>a_jai​>aj​,那么我们称aia ...

  4. bzoj2431: [HAOI2009]逆序对数列(前缀和优化dp)

    2431: [HAOI2009]逆序对数列 Time Limit: 5 Sec  Memory Limit: 128 MBSubmit: 2312  Solved: 1330[Submit][Stat ...

  5. BZOJ 2431: [HAOI2009]逆序对数列( dp )

    dp(i,j)表示1~i的全部排列中逆序对数为j的个数. 从1~i-1的全部排列中加入i, 那么可以产生的逆序对数为0~i-1, 所以 dp(i,j) = Σ dp(i-1,k) (j-i+1 ≤ k ...

  6. bzoj千题计划153:bzoj2431: [HAOI2009]逆序对数列

    http://www.lydsy.com/JudgeOnline/problem.php?id=2431 dp[i][j] 表示i的排列,有j个逆序对的方案数 加入i+1,此时i+1是排列中最大的数, ...

  7. 【bzoj2431】[HAOI2009]逆序对数列 dp

    题目描述 对于一个数列{ai},如果有i<j且ai>aj,那么我们称ai与aj为一对逆序对数.若对于任意一个由1~n自然数组成的 数列,可以很容易求出有多少个逆序对数.那么逆序对数为k的这 ...

  8. bzoj2431: [HAOI2009]逆序对数列(DP)

    f[i][j]前i个数有j个逆序对的数量 f[i][j]=sigma(f[i-1][j-k]){1<=k<=i} 维护一个前缀和即可 #include<iostream> #i ...

  9. bzoj2431: [HAOI2009]逆序对数列

    dp. f[i][j]表示放置第i个数有j个逆序对的方案数. s[i][j]维护前缀和(f[i][0]~f[i][j]). 状态转移方程 f[i][j]=s[i-1][j]-s[i-1][max(j- ...

随机推荐

  1. Lucene学习之四:Lucene的索引文件格式(1)

    本文转载自:http://www.cnblogs.com/forfuture1978/archive/2009/12/14/1623597.html Lucene的索引里面存了些什么,如何存放的,也即 ...

  2. 2017年11月30日 C#TreeNode递归&邮箱验证&新用户窗体

    TreeNode递归 递归:自己调用自己一层一层的把数据找出来 TreeNode:可以创建多个节点 private void button1_Click(object sender, EventArg ...

  3. 一:Linux知识整理

    一.文件系统的管理 tips:输入命令的时候要常用tab键来补全 ls 查看目录信息 ( ls / ) ls -l 等价于 ll pwd 查看当前所处的路径 cd 切换目录 (cd /) ,如果不带参 ...

  4. 十一、cent OS下搭建SVN服务器

    安装SVN命令:yum install subversion 查看安装位置:rpm -ql subversion,我们看到它在/usr/bin目录下生成了svn的二进制文件 查看svn版本:/usr/ ...

  5. SpringCloud实战之初级入门(二)— 服务注册与服务调用

    目录 1.环境介绍 2.服务提供 2.1 创建工程 2.2 修改配置文件 2.3 修改启动文件 2.5 亲测注意事项 3.服务调用 3.1 创建工程 3.2 修改配置文件 3.3 修改启动文件 3.4 ...

  6. redis的持久化方式

    redis有两种持久化方式,第一种是基于快照的持久化方式,第二种是基于文件追加的持久化方式 一.基于快照的持久化 1.修改redis.conf配置文件,开启基于快照的持久化方式 2.修改持久化文件存放 ...

  7. fzu 2138 久违的月赛之一 容斥。

    Problem 2138 久违的月赛之一 Accept: 40    Submit: 86 Time Limit: 1000 mSec    Memory Limit : 32768 KB Probl ...

  8. ul li各属性设置

    1. ul li删除前面的黑点:style=“list-style:none;” <ul style=“list-style:none;”> <li></li> & ...

  9. Hibernate 注解 (Annotations 三)多对一双向注解

    注解(Annotation),也叫元数据.一种代码级别的说明.它是JDK1.5及以后版本引入的一个特性,与类.接口.枚举是在同一个层次.它可以声明在包.类.字段.方法.局部变量.方法参数等的前面,用来 ...

  10. JQ中的FormData对象 ajax上传文件

    HTML代码: <form enctype="multipart/form-data" method="POST" name="searchfo ...