目录

1 问题描述

2 解决方案

 


1 问题描述

问题描述
给定带权无向图,求出一颗方差最小的生成树。
输入格式
输入多组测试数据。第一行为N,M,依次是点数和边数。接下来M行,每行三个整数U,V,W,代表连接U,V的边,和权值W。保证图连通。n=m=0标志着测试文件的结束。
输出格式
对于每组数据,输出最小方差,四舍五入到0.01。输出格式按照样例。
样例输入
4 5
1 2 1
2 3 2
3 4 2
4 1 1
2 4 3
4 6
1 2 1
2 3 2
3 4 3
4 1 1
2 4 3
1 3 3
0 0
样例输出
Case 1: 0.22
Case 2: 0.00
数据规模与约定

1<=U,V<=N<=50,N-1<=M<=1000,0<=W<=50。数据不超过5组。


2 解决方案

本题主要考查Kruskal算法,其中的重点在于并查算法的应用,在寻找最小平方差的最小生成树时,需要枚举边权值的均值。

但是,依照这样的方法,在蓝桥练习系统中测评一直为50分,在网上找了一下其他网友写的C代码,提交也是50分,可能是蓝桥练习系统的后台测试数据有点问题,也有可能是本题枚举的精确度不够。

具体代码如下:

import java.util.ArrayList;
import java.util.Collections;
import java.util.Comparator;
import java.util.Scanner; public class Main {
public static int n, m;
public static double minV; //输入所有边中权值最小的边
public static double maxV; //输入所有边中权值最大的边
public static int[] id;
public static ArrayList<edge> map;
public static ArrayList<Double> result = new ArrayList<Double>(); class MyComparator implements Comparator<edge> {
public int compare(edge arg0, edge arg1) {
if(arg0.w > arg1.w)
return 1;
else if(arg0.w < arg1.w)
return -1;
return 0;
}
} static class edge {
public int a; //边的起点
public int b; //边的终点
public double v; //边的权值
public double w; //边权的方差值 public edge(int a, int b, double v) {
this.a = a;
this.b = b;
this.v = v;
this.w = 0;
}
} public void init() {
minV = Double.MAX_VALUE;
maxV = Double.MIN_VALUE;
map = new ArrayList<edge>();
} public int find(int a) {
int root = a;
while(id[root] >= 0) {
root = id[root];
}
int k = a, i;
while(k != root) {
i = id[k];
id[k] = root;
k = i;
}
return root;
} public void union(int a, int b) {
int rootA = find(a);
int rootB = find(b);
if(rootA == rootB)
return;
int num = id[rootA] + id[rootB];
if(id[rootA] < id[rootB]) {
id[rootB] = rootA;
id[rootA] = num;
} else {
id[rootA] = rootB;
id[rootB] = num;
}
} public void getResult() {
double avg = minV;
double minResult = Double.MAX_VALUE;
for(;avg <= maxV;avg = avg + 0.3) { //此处是解决本题的关键,即枚举最小生成树的边权的均值
for(int i = 0;i < map.size();i++) {
double v = map.get(i).v - avg;
map.get(i).w = v * v;
}
Collections.sort(map, new MyComparator());
id = new int[n + 1];
for(int i = 1;i <= n;i++)
id[i] = -1;
double sum = 0;
double[] value = new double[n - 1];
int count = 0;
for(int i = 0;i < map.size();i++) {
int rootA = find(map.get(i).a);
int rootB = find(map.get(i).b);
if(rootA != rootB) {
union(map.get(i).a, map.get(i).b);
value[count++] = map.get(i).v;
sum += map.get(i).v;
if(count == n - 1)
break;
}
}
sum = sum / (n - 1);
double temp = 0;
for(int i = 0;i < value.length;i++) {
temp = temp + (value[i] - sum) * (value[i] - sum);
}
temp = temp / (n - 1);
if(minResult > temp)
minResult = temp;
}
result.add(minResult);
} public static void main(String[] args) {
Main test = new Main();
Scanner in = new Scanner(System.in);
while(true) {
n = in.nextInt();
m = in.nextInt();
if(n == 0 || m == 0)
break;
test.init();
for(int i = 1;i <= m;i++) {
int a = in.nextInt();
int b = in.nextInt();
double v = in.nextDouble();
map.add(new edge(a, b, v));
minV = Math.min(minV, v);
maxV = Math.max(maxV, v);
}
test.getResult();
}
for(int i = 0;i < result.size();i++) {
System.out.print("Case "+(i+1)+": ");
System.out.printf("%.2f", result.get(i));
System.out.println();
}
}
}

算法笔记_164:算法提高 最小方差生成树(Java)的更多相关文章

  1. 算法提高 最小方差生成树(Kruskal)_模板

     算法提高 最小方差生成树   时间限制:1.0s   内存限制:256.0MB        问题描述 给定带权无向图,求出一颗方差最小的生成树. 输入格式 输入多组测试数据.第一行为N,M,依次是 ...

  2. Java实现 蓝桥杯 算法提高最小方差生成树

    1 问题描述 给定带权无向图,求出一颗方差最小的生成树. 输入格式 输入多组测试数据.第一行为N,M,依次是点数和边数.接下来M行,每行三个整数U,V,W,代表连接U,V的边,和权值W.保证图连通.n ...

  3. [loj2469]最小方差生成树

    2018年论文题 约定:令点集$V=[1,n]$.边集$E=[1,m]$,记$m$条边依次为$e_{i}=(x_{i},y_{i},c_{i})$(其中$1\le i\le m$),将其按照$c_{i ...

  4. 算法笔记_165:算法提高 道路和航路(Java)

    目录 1 问题描述 2解决方案   1 问题描述 问题描述 农夫约翰正在针对一个新区域的牛奶配送合同进行研究.他打算分发牛奶到T个城镇(标号为1..T),这些城镇通过R条标号为(1..R)的道路和P条 ...

  5. 算法笔记--最大流和最小割 && 最小费用最大流 && 上下界网络流

    最大流: 给定指定的一个有向图,其中有两个特殊的点源S(Sources)和汇T(Sinks),每条边有指定的容量(Capacity),求满足条件的从S到T的最大流(MaxFlow). 最小割: 割是网 ...

  6. 算法笔记_155:算法提高 概率计算(Java)

    目录 1 问题描述 2 解决方案   1 问题描述 问题描述 生成n个∈[a,b]的随机整数,输出它们的和为x的概率. 输入格式 一行输入四个整数依次为n,a,b,x,用空格分隔. 输出格式 输出一行 ...

  7. 算法笔记_167:算法提高 矩阵翻转(Java)

    目录 1 问题描述 2 解决方案   1 问题描述 问题描述 Ciel有一个N*N的矩阵,每个格子里都有一个整数. N是一个奇数,设X = (N+1)/2.Ciel每次都可以做这样的一次操作:他从矩阵 ...

  8. 算法笔记_166:算法提高 金属采集(Java)

    目录 1 问题描述 2 解决方案   1 问题描述 问题描述 人类在火星上发现了一种新的金属!这些金属分布在一些奇怪的地方,不妨叫它节点好了.一些节点之间有道路相连,所有的节点和道路形成了一棵树.一共 ...

  9. 算法笔记_163:算法提高 最大乘积(Java)

    目录 1 问题描述 2 解决方案   1 问题描述 问题描述 对于n个数,从中取出m个数,如何取使得这m个数的乘积最大呢? 输入格式 第一行一个数表示数据组数 每组输入数据共2行: 第1行给出总共的数 ...

随机推荐

  1. HDU 6280 From Tree to Graph(2018 湘潭邀请 E题,树的返祖边)

    其实打返祖边就相当于$x$到祖先这一段点(不包括两端)答案都要减$1$. 然后每个点最多减$1$次$1$. #include <bits/stdc++.h> using namespace ...

  2. 洛谷P1940买蛋糕

    题目传送门 题意:给定你一个数n,要求用最小个数的整数组成小于等于n的所有整数,并求出方案数. 很明显,擅长二进制的大犇们肯定一眼就看得出方案数是log2(n)+1,然而我并不擅长,但是推了一小会儿也 ...

  3. Java面向对象和特征

    面向对象: 概念: 面向对象是一种程序设计思想,计算机程序的设计实质上就是将现实中的一些事物的特征抽离出来描述成一些计算机事件的过程,这种抽象的过程中,我们把具体的事物封装成一个一个的整体进行描述,使 ...

  4. Codeforces Round #116 (Div. 2, ACM-ICPC Rules) Letter(DP 枚举)

    Letter time limit per test 1 second memory limit per test 256 megabytes input standard input output ...

  5. git "Could not read from remote repository.Please make sure you have the correct access rights."解决方案

    我们在使用git clone 或其他命令的时候,有时候会遇到这类问题,如图: fatal: Could not read from remote repository.Please make sure ...

  6. 解决phpStudy启动网站警告问题

    在用phpStudy的时候,在页面中会有一些警告 notice:Undefined variable... notice:Undefined index... 在php.ini里面找到 display ...

  7. 重拾vue1

    vue 一.认识Vue 定义:一个构建数据驱动的 web 界面的渐进式框架 优点: 1.可以完全通过客户端浏览器渲染页面,服务器端只提供数据 2.方便构建单页面应用程序(SPA) 二.引入Vue &l ...

  8. 83.(01背包)CYD刷题

    3130 CYD刷题  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 钻石 Diamond 题解 查看运行结果 题目描述 Description 下午,CYD要刷题了,已知CY ...

  9. [原创]MyEclipse2014全手动实现反向工程---解决手动整合ssh时发生的、在hibernate反向工程的时候找不到项目名的问题

    1.在MyEclipse2014中新建两个Web Project项目,名字分别为:Hibernate_manual和Hibernate_auto. 2.单击选中新建的Web项目Hibernate_au ...

  10. TWinHttp之二

    TWinHttp之二 function EncodeParams(strings: TStrings): SockString;var i: Integer; S: string;begin for ...