大力推荐博客:

傅里叶变换(FFT)学习笔记

一、多项式乘法:

我们要明白的是:

FFT利用分治,处理多项式乘法,达到O(nlogn)的复杂度。(虽然常数大)

FFT=DFT+IDFT

DFT:

本质是把多项式的系数表达转化为点值表达。因为点值表达,y可以直接相乘。点值表达下相乘的复杂度是O(n)的。

我们分别对两个多项式求x为$\omega_n^i$时的y值。

然后可以O(n)求出乘积多项式x为$\omega_n^i$时的y值。

求法:

把F(x)奇偶分类。

$FL(x)=a_0+a_2x+...+a_{n-2}x^{n/2-1}$

$FR(x)=a_1+a_3x+...+a_{n-1}x^{n/2-1}$

$F(x)=FL(x^2)+xFR(x^2)$

带入那些神奇的单位根之后,
发现有:

$0<=k<n/2$

$F(\omega_n^k)=Fl(\omega_{n/2}^k)+\omega_{n}^kFR(\omega_{n/2}^k)$

$F(\omega_n^{k+n/2})=Fl(\omega_{n/2}^k)-\omega_{n}^kFR(\omega_{n/2}^k)$

我们只要知道Fl、FR多项式在那n/2个位置的点值,那么就可以知道F那n个位置的点值了。

分治就可以处理出来。

IDFT:

经过一系列矩阵的运算之后,,,,

可以得到:

$b_k=[(ω_n^{-k})^0y_0+(ω_n^{-k})^1y_1+(ω_n^{-k})^2y_2+...+(ω_n^k)^{n-1}y_{n-1}]/n$

可以把y当做系数,

只要知道,当x是一系列w的时候,值是多少。

那么就求出来了$b_k$

FFT再写一遍。

注意这里带入的是$ω_n^{-k}$

开始的$tmp$有所不同

// luogu-judger-enable-o2
#include<bits/stdc++.h>
#define reg register int
#define il inline
#define numb (ch^'0')
using namespace std;
typedef long long ll;
il void rd(int &x){
char ch;x=;bool fl=false;
while(!isdigit(ch=getchar()))(ch=='-')&&(fl=true);
for(x=numb;isdigit(ch=getchar());x=x*+numb);
(fl==true)&&(x=-x);
}
namespace Miracle{
const int N=1e6+;
const double Pi=acos(-);
struct node{
double x,y;
node(){}
node(double xx,double yy){x=xx,y=yy;}
node operator +(const node &b){
return node(x+b.x,y+b.y);
}
node operator -(const node &b){
return node(x-b.x,y-b.y);
}
node operator *(const node &b){
return node(x*b.x-y*b.y,x*b.y+y*b.x);
}
}a[*N],b[*N];
int n,m;
int r[*N];
void FFT(node *f,short op){
for(reg i=;i<n;++i){
if(i<r[i]){
node tmp=f[i];
f[i]=f[r[i]];
f[r[i]]=tmp;
}
}
for(reg p=;p<=n;p<<=){
int len=p/;
node tmp(cos(Pi/len),op*sin(Pi/len));
for(reg k=;k<n;k+=p){
node buf(,);
for(reg l=k;l<k+len;++l){
node tt=buf*f[l+len];
f[l+len]=f[l]-tt;
f[l]=f[l]+tt;
buf=buf*tmp;
}
}
}
}
int main(){
scanf("%d%d",&n,&m);
for(reg i=;i<=n;++i) scanf("%lf",&a[i].x);
for(reg i=;i<=m;++i) scanf("%lf",&b[i].x);
for(m=n+m,n=;n<=m;n<<=);
for(reg i=;i<n;++i){
r[i]=r[i>>]>>|((i&)?n>>:);
}
FFT(a,);FFT(b,);
for(reg i=;i<n;++i) b[i]=a[i]*b[i];
FFT(b,-);
for(reg i=;i<=m;++i) printf("%.0lf ",fabs(b[i].x)/n);
return ;
} }
int main(){
Miracle::main();
return ;
} /*
Author: *Miracle*
Date: 2018/11/21 8:05:13
*/

多项式乘法

关键点就是在于,用了单位根这个东西,可以避免平方、避免爆long long 以及精度损失的情况下,再利用乘法分配律,可以O(nlogn)得到多项式的点值表达。

例题:

P3338 [ZJOI2014]力

思路:要用FFT,必然要化成多项式卷积的形式

即形如:$h[j]=\sum_{i=0}^j f[i]*g[j-i]$

这样的话,我们把f,g分别作为两个多项式的系数,那么,发现,h[j]的值,恰好是f,g两个多项式乘积得到的多项式的第j+1项的系数。(考虑次数j是怎么来的)

就可以FFT优化这个n^2的算式了。

对于这个题:

令$f[i]=q[i]$,$g[i]=\frac{1}{i*i}$

特别的;有$g[0]=0$

则有$E[j]=\sum_{i=0}^jf[i]*g[j-i]-\sum_{i=j}^nf[i]*g[i-j]$

我们可以分开算,

后面的减法部分类似一个后缀,把$f$数组$reverse$一下,就变成了前缀了。$g$数组不用,因为距离要保持这样。

于是;

$E[j]=\sum_{i=0}^jf[i]*g[j-i]-\sum_{i=0}^{n-j}f'[i]*g[n-j-i]$

两次$FFT$即可

值得注意的是:

1.g数组赋值的时候,i*i可能会爆int,导致精度误差。所以,写成1/i/i比1/(i*i)要好得多。(30pts->100pts)

2.乘积多项式一定要n+n项都算出来,因为最后的插值和每一项的点值都有关系。即使我们只关心前n项。

代码:

#include<bits/stdc++.h>
#define reg register int
#define il inline
#define numb (ch^'0')
using namespace std;
typedef long long ll;
il void rd(int &x){
char ch;x=;bool fl=false;
while(!isdigit(ch=getchar()))(ch=='-')&&(fl=true);
for(x=numb;isdigit(ch=getchar());x=x*+numb);
(fl==true)&&(x=-x);
}
namespace Miracle{
const int N=+;
const double Pi=acos(-);
struct node{
double x,y;
node(){}
node(double xx,double yy){
x=xx;y=yy;
}
}f[*N],g[*N],h[*N];
double q[*N];
int r[*N];
int n,m;
node operator+(const node &a,const node &b){
return node(a.x+b.x,a.y+b.y);
}
node operator-(const node &a,const node &b){
return node(a.x-b.x,a.y-b.y);
}
node operator*(const node &a,const node &b){
return node(a.x*b.x-a.y*b.y,a.x*b.y+a.y*b.x);
}
void FFT(node *f,short op){
for(reg i=;i<n;++i){
if(i<r[i]){
node tmp=f[i];
f[i]=f[r[i]];
f[r[i]]=tmp;
}
}
for(reg p=;p<=n;p<<=){
int len=p/;
node tmp=node(cos(Pi/len),op*sin(Pi/len));
for(reg k=;k<n;k+=p){
node buf=node(,);
for(reg l=k;l<k+len;++l){
node tt=buf*f[l+len];
f[l+len]=f[l]-tt;
f[l]=f[l]+tt;
buf=buf*tmp;
}
}
}
}
int main(){
scanf("%d",&m);
for(reg i=;i<=m;++i){
scanf("%lf",&q[i]);
if(i)g[i]=node((double)/(double)i/(double)i,);
}
for(n=;n<=*m;n<<=);
//cout<<" nn "<<n<<endl;
for(reg i=;i<n;++i){
f[i]=node(q[i],);
//cout<<f[i].x<<" ";
} //g[0]=node(0,0);
for(reg i=;i<n;++i){
r[i]=(r[i>>]>>)|((i&)?(n>>):);
} FFT(f,);
FFT(g,);
for(reg i=;i<n;++i) f[i]=g[i]*f[i];
FFT(f,-); reverse(q+,q+n);
for(reg i=;i<n;++i){
h[i]=node(q[i],);
}
FFT(h,);
for(reg i=;i<n;++i) h[i]=h[i]*g[i];
FFT(h,-); for(reg i=;i<=m;++i){
node ans=f[i]-h[n-i];
printf("%lf\n",ans.x/n);
}
return ;
} }
int main(){
Miracle::main();
return ;
} /*
Author: *Miracle*
Date: 2018/11/21 10:17:15
*/

FFT优化高精乘法:

把数字看成系数,把10^k看做是x^k,那么就可以得到多项式。

这两个多项式相乘,得到的多项式,各个系数通过进位变成个位数之后,直接输出系数即可。

值得注意的是:

浮点数四舍五入赋值:

$a=floor(b+0.5);$

#include<bits/stdc++.h>
#define reg register int
#define il inline
#define numb (ch^'0')
using namespace std;
typedef long long ll;
il void rd(int &x){
char ch;x=;bool fl=false;
while(!isdigit(ch=getchar()))(ch=='-')&&(fl=true);
for(x=numb;isdigit(ch=getchar());x=x*+numb);
(fl==true)&&(x=-x);
}
namespace Miracle{
const int N=+;
const double Pi=acos(-);
struct node{
double x,y;
node(){}
node(double xx,double yy){
x=xx;y=yy;
}
}a[*N],b[*N];
char p[N],q[N];
int c[*N];
int n,m;
int r[*N];
node operator+(node a,node b){
return node(a.x+b.x,a.y+b.y);
}
node operator-(node a,node b){
return node(a.x-b.x,a.y-b.y);
}
node operator*(node a,node b){
return node(a.x*b.x-a.y*b.y,a.x*b.y+a.y*b.x);
}
void FFT(node *f,short op){
for(reg i=;i<n;++i){
if(i<r[i]){
node tmp=f[i];
f[i]=f[r[i]];
f[r[i]]=tmp;
}
}
for(reg p=;p<=n;p<<=){
int len=p/;
node tmp=node(cos(Pi/len),op*sin(Pi/len));
for(reg k=;k<n;k+=p){
node buf=node(,);
for(reg l=k;l<k+len;++l){
node tt=buf*f[l+len];
f[l+len]=f[l]-tt;
f[l]=f[l]+tt;
buf=buf*tmp;
}
}
}
}
int main(){
scanf("%d",&m);
scanf("%s",p);scanf("%s",q);
for(reg i=;i<m;++i){
a[m-i-].x=p[i]-'';
b[m-i-].x=q[i]-'';
}
for(m=m+m,n=;n<m;n<<=);
for(reg i=;i<n;++i){
r[i]=r[i>>]>>|((i&)?n>>:);
}
FFT(a,);FFT(b,); for(reg i=;i<n;++i) b[i]=a[i]*b[i];
FFT(b,-);
for(reg i=;i<n;++i){
c[i]=floor(b[i].x/n+0.5);
} int x=;
for(reg i=;i<n;++i){
c[i]+=x;
x=(int)c[i]/;
c[i]%=;
}
while(c[n-]==&&n>=) --n;
for(reg i=n-;i>=;--i){
printf("%d",c[i]);
}
return ;
} }
int main(){
Miracle::main();
return ;
} /*
Author: *Miracle*
Date: 2018/11/21 16:30:14
*/

FFT高精

[学习笔记]FFT——快速傅里叶变换的更多相关文章

  1. 【学习笔记】快速傅里叶变换(FFT)

    [学习笔记]快速傅里叶变换 学习之前先看懂这个 浅谈范德蒙德(Vandermonde)方阵的逆矩阵的求法以及快速傅里叶变换(FFT)中IDFT的原理--gzy hhh开个玩笑. 讲一下\(FFT\) ...

  2. [学习笔记]NTT——快速数论变换

    先要学会FFT[学习笔记]FFT——快速傅里叶变换 一.简介 FFT会爆精度.而且浮点数相乘常数比取模还大. 然后NTT横空出世了 虽然单位根是个好东西.但是,我们还有更好的东西 我们先选择一个模数, ...

  3. 「学习笔记」FFT 快速傅里叶变换

    目录 「学习笔记」FFT 快速傅里叶变换 啥是 FFT 呀?它可以干什么? 必备芝士 点值表示 复数 傅立叶正变换 傅里叶逆变换 FFT 的代码实现 还会有的 NTT 和三模数 NTT... 「学习笔 ...

  4. FFT 快速傅里叶变换 学习笔记

    FFT 快速傅里叶变换 前言 lmc,ikka,attack等众多大佬都没教会的我终于要自己填坑了. 又是机房里最后一个学fft的人 早背过圆周率50位填坑了 用处 多项式乘法 卷积 \(g(x)=a ...

  5. Django RF:学习笔记(8)——快速开始

    Django RF:学习笔记(8)——快速开始 安装配置 1.使用Pip安装Django REST Framework: pip install djangorestframework 2.在Sett ...

  6. CQOI2018 九连环 打表找规律 fft快速傅里叶变换

    题面: CQOI2018九连环 分析: 个人认为这道题没有什么价值,纯粹是为了考算法而考算法. 对于小数据我们可以直接爆搜打表,打表出来我们可以观察规律. f[1~10]: 1 2 5 10 21 4 ...

  7. 「算法笔记」快速傅里叶变换(FFT)

    一.引入 首先,定义多项式的形式为 \(f(x)=\sum_{i=0}^n a_ix^i\),其中 \(a_i\) 为系数,\(n\) 为次数,这种表示方法称为"系数表示法",一个 ...

  8. [学习笔记]FWT——快速沃尔什变换

    解决涉及子集配凑的卷积问题 一.介绍 1.基本用法 FWT快速沃尔什变换学习笔记 就是解决一类问题: $f[k]=\sum_{i\oplus j=k}a[i]*b[j]$ 基本思想和FFT类似. 首先 ...

  9. FFT —— 快速傅里叶变换

    问题: 已知A[], B[], 求C[],使: 定义C是A,B的卷积,例如多项式乘法等. 朴素做法是按照定义枚举i和j,但这样时间复杂度是O(n2). 能不能使时间复杂度降下来呢? 点值表示法: 我们 ...

随机推荐

  1. 在Linux CentOS7系统中搭建LNMP

    LNMP就是Linux+Nginx+MySQL+PHP,既然是在Linux CentOS7那么Linux就是已经安装好了.所以接下百度一下接下来的教程,整理测试如下: 教程是centos6.2的有点老 ...

  2. 怎样安装Appium

    在浏览器地址栏输入 http://appium.io/ 打开Appium官网: 安装包下载完成后, 一路默认安装, 什么都不用点击, 等待大约10分钟: 安装完成后, 会在桌面生成快捷图标: 启动: ...

  3. darknet 识别获取结果

    在examples/darknet.c文件中若使用detect命令可以看到调用了test_detector. ... else if (0 == strcmp(argv[1], "detec ...

  4. 【转】巫师3:狂猎(The Witcher 3: Wild Hunt )的游戏事件工作流

    转自腾讯游戏开发者平台(GAD) CDPROJEKT RED的主程序.Piotr Tomsinski 在GDC2016的最后一天18号,CDPROJEKT RED的主程Piotr Tomsinski, ...

  5. Java开发中用的比较多的数据结构

    java 中几种常用数据结构 2016年07月11日 09:11:27 阅读数:83211 标签: 数据结构java 更多 个人分类: 自行学习   JAVA中常用的数据结构(java.util. 中 ...

  6. ServiceStack.Ormlit 使用Insert的时候自增列不会被赋值

    Insert签名是这样的,将第2个参数设置为true就会返回刚插入的自增列ID了,然后可以手工赋值到对象上面去 public static long Insert<T>(this IDbC ...

  7. POJ 3487 The Stable Marriage Problem(稳定婚姻问题 模版题)

    Description The stable marriage problem consists of matching members of two different sets according ...

  8. 第三课——MFC编程

    一.MFC概述 1. MFC简述 MFC不仅仅是一套基础类库,更是一种编程方式. 2. MFC由来 1987年微软公司推出了第一代Windows产品,并为应用程序设计者提供了Win16(16位Wind ...

  9. c# dll问题

    问题描述: dll完全拷贝另一个程序,可是报缺少引用程序集之类的错误. 解决办法: 有可能是.net版本造成的错误.一般常见在3.5升到4之后,存在很多容差.

  10. 评价cnblogs的用户体验

    用户体验: 1.是否提供良好的体验给用户(同时提供价值)?    cnbolgs为广大的用户提供了一个学习工作交流的平台,方便大家对各种问题提出自己的看法,并且可以实现不同用户的即时评论,互动交流. ...