终于写了一次可持久化Treap,做的是可持久化序列的模板题。

Treap

Treap=Tree+Heap,是一个随机化的数据结构。它的每个节点至少有两个关键字,一个是我们要存储的\(val\),一个是随机堆关键字,我把它称为\(hp\)。Treap满足的性质是\(val\)从小到大,并且每个节点的\(hp\)都小于(或都大于)儿子节点的\(hp\)值。也就是说,通过一个随机数来让Treap具有堆的性质,从而使得其期望深度为\(O(logn)\)。

旋转

Treap可以通过旋转来保持其平衡,操作与splay类似。

非旋转

非旋转Treap是本文的重点。由于Treap同时具有二叉搜索树和堆的性质,我们考虑利用堆的性质来保持平衡。想一想之前提到过的左偏树的平衡方法,我们可以得到一个基于SplitMerge操作的Treap,称为非旋转Treap。

Split

\(split(x,k)\)返回一个\(pair\),表示把\(x\)为根的树的前\(k\)个元素放在一颗树中,后面的放在另一颗树中,返回这两棵树的根。

这个操作实现起来非常简单。如果\(x\)的左子树的\(size\ge k\),那么直接递归进左子树,把左子树分出来的第二颗树和当前的\(x\)和右子树合并。否则递归右子树。写的时候注意一下顺序即可。

Merge

\(merge(x,y)\)返回merge出的树的根。同样递归实现。如果\(hp(x)<hp(y)\),则\(merge(rc(x),y)\),否则\(merge(x,lc(y))\)。

非旋转Treap的关键在于不需要维护父亲节点的信息,故可以可持久化!

每次split和merge走到的所有点都新建一个即可。注意下传标记也要新建点。

代码

可持久化序列这道题要求支持三个操作:

  • \(\text{1 l r}\),翻转\(l\)到\(r\)的区间
  • \(\text{2 l r}\),询问\(l\)的到\(r\)的区间和
  • \(\text{3 p}\),回到\(p\)时刻

每次修改新建点打翻转标记即可。

#include<cstdio>
#include<cctype>
#include<cstring>
#include<cstdlib>
#include<ctime>
#include<utility>
#include<algorithm>
using namespace std;
typedef pair<int,int> Pair;
int read() {
int x=0,f=1;
char c=getchar();
for (;!isdigit(c);c=getchar()) if (c=='-') f=-1;
for (;isdigit(c);c=getchar()) x=x*10+c-'0';
return x*f;
}
const int maxn=5e4+5;
const int nlogn=1.3e7+5;
struct node {
int x,hp,l,r,sum,size;
bool rev;
void clear() {
x=hp=l=r=sum=size=rev=0;
}
};
struct TREAP {
int pool[nlogn];
int pooler;
node t[nlogn];
int now,all;
int root[maxn];
TREAP ():now(0),pooler(1) {
for (int i=1;i<nlogn;++i) pool[i]=i;
root[now]=pool[pooler++];
}
int newroot() {
int ret=pool[pooler++];
return ret;
}
int newnode(int x) {
int ret=pool[pooler++];
t[ret].hp=rand();
t[ret].size=1;
t[ret].x=t[ret].sum=x;
return ret;
}
void delnode(int x) {
t[x].clear();
pool[--pooler]=x;
}
void next() {
root[++all]=newroot();
t[root[all]]=t[root[now]];
now=all;
}
void back(int x) {
now=x;
}
void update(int x) {
t[x].sum=t[x].x+t[t[x].l].sum+t[t[x].r].sum;
t[x].size=t[t[x].l].size+t[t[x].r].size+1;
}
void pushdown(int x) {
if (!t[x].rev) return;
if (t[x].l) {
int tx=newnode(t[t[x].l].x);
t[tx]=t[t[x].l];
t[tx].rev^=true;
t[x].l=tx;
}
if (t[x].r) {
int tx=newnode(t[t[x].r].x);
t[tx]=t[t[x].r];
t[tx].rev^=true;
t[x].r=tx;
}
swap(t[x].l,t[x].r);
t[x].rev=false;
}
int merge(int x,int y) {
if (!x) return y;
if (!y) return x;
int now;
if (t[x].hp<=t[y].hp) {
now=newnode(t[x].x);
t[now]=t[x];
pushdown(now);
t[now].r=merge(t[now].r,y);
} else {
now=newnode(t[y].x);
t[now]=t[y];
pushdown(now);
t[now].l=merge(x,t[now].l);
}
update(now);
return now;
}
Pair split(int x,int p) {
if (t[x].size==p) return make_pair(x,0);
int now=newnode(t[x].x);
t[now]=t[x];
pushdown(now);
int l=t[now].l,r=t[now].r;
if (t[l].size>=p) {
t[now].l=0;
update(now);
Pair g=split(l,p);
now=merge(g.second,now);
return make_pair(g.first,now);
} else if (t[l].size+1==p) {
t[now].r=0;
update(now);
return make_pair(now,r);
} else {
t[now].r=0;
update(now);
Pair g=split(r,p-t[l].size-1);
now=merge(now,g.first);
return make_pair(now,g.second);
}
}
void rever(int l,int r) {
++l,++r;
Pair g=split(root[now],l-1);
Pair h=split(g.second,r-l+1);
int want=h.first;
int here=newnode(t[want].x);
t[here]=t[want];
t[here].rev^=true;
int fi=merge(g.first,here);
int se=merge(fi,h.second);
root[now]=se;
}
int query(int l,int r) {
++l,++r;
Pair g=split(root[now],l-1);
Pair h=split(g.second,r-l+1);
int want=h.first;
int ret=t[want].sum;
int fi=merge(g.first,want);
int se=merge(fi,h.second);
root[now]=se;
return ret;
}
void insert(int x) {
int k=newnode(x);
root[now]=merge(root[now],k);
}
} Treap;
int main() {
#ifndef ONLINE_JUDGE
freopen("test.in","r",stdin);
freopen("my.out","w",stdout);
#endif
srand(time(0));
int n=read(),m=read();
for (int i=1;i<=n;++i) {
int x=read();
Treap.insert(x);
}
while (m--) {
int op=read();
if (op==1) {
Treap.next();
int l=read(),r=read();
Treap.rever(l,r);
} else if (op==2) {
int l=read(),r=read();
int ans=Treap.query(l,r);
printf("%d\n",ans);
} else if (op==3) {
Treap.back(read());
}
}
return 0;
}

可持久化Treap的更多相关文章

  1. UVALive 6145 Version Controlled IDE(可持久化treap、rope)

    题目链接:https://icpcarchive.ecs.baylor.edu/index.php?option=com_onlinejudge&Itemid=8&page=show_ ...

  2. BZOJ 3595: [Scoi2014]方伯伯的Oj SBT+可持久化Treap

    3595: [Scoi2014]方伯伯的Oj Time Limit: 6 Sec  Memory Limit: 256 MBSubmit: 102  Solved: 54[Submit][Status ...

  3. 【模板】可持久化文艺平衡树-可持久化treap

    题目链接 题意 对于各个以往的历史版本实现以下操作: 在第 p 个数后插入数 x . 删除第 p 个数. 翻转区间 [l,r],例如原序列是 \(\{5,4,3,2,1\}\),翻转区间 [2,4] ...

  4. 高rong效chang的可持久化treap

    很多人觉得可持久化treap很慢,但是事实上只是他们可持久化treap的写法不对.他们一般是用split和merge实现所有功能,但是这样会有许多不必要的分裂.其实我们可以用一种特殊的方式来实现插入和 ...

  5. Codeforces - 38G 可持久化Treap 区间操作

    题意:\(n\)个人排队,每个人有重要度\(p\)和不要脸度\(c\),如果第\(i\)个人的重要度大于第\(i-1\)个人的重要度,那么他们之间可以交换,不要脸度-1,交换后先前的第\(i\)个人也 ...

  6. Codeforces - 675D 可持久化Treap 树形操作

    题意:模拟二叉树的构造过程,给出\(n\)个节点,每次从根插入,小于当前节点转到左儿子,否则右儿子,输出第\([2,n]\)个节点的父亲的权值 直接手动模拟会被链式结构T掉 网上找了下发现二叉树的性质 ...

  7. 平衡树与可持久化treap

    平衡树(二叉树) 线段树不支持插入or删除一个数于是平衡树产生了 常见平衡树:treap(比sbt慢,好写吧),SBT(快,比较好写,有些功能不支持),splay(特别慢,复杂度当做根号n来用,功能强 ...

  8. 脑洞大开加偏执人格——可持久化treap版的Link Cut Tree2

    试了一下先上再下的Treap方式,很高兴,代码变短了,但是,跑的变慢了!!!其实慢得不多,5%左右.而且这个版本的写法不容易写错..只要会一般可持久化Treap的人写着都不难...就是相对于(压行的) ...

  9. 脑洞大开加偏执人格——可持久化treap版的Link Cut Tree

    一直没有点动态树这个科技树,因为听说只能用Splay,用Treap的话多一个log.有一天脑洞大开,想到也许Treap也能从底向上Split.仔细思考了一下,发现翻转标记不好写,再仔细思考了一下,发现 ...

随机推荐

  1. 菜鸟学Linux - 变量基本规则

    变量是一个很重要的概念,无论是bash脚本还是其他语言,都是如此.在bash中,创建变量很简单,给变量一个名称即可.默认情况下,变量的值为空.我们可以通过等号为变量赋值.需要注意的是,变量和变量的值不 ...

  2. R语言使用过程中出现的问题--读取EXCEL文件

    方法一: 按照R导论中的方法,使用RODBC包, library(RODBC) channel<-odbcConnectExcel("file.xlsx") da2<- ...

  3. hdu5698瞬间移动(杨辉三角+快速幂+逆元)

    瞬间移动 Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total Submis ...

  4. hdu1421搬寝室(动态规划)

    搬寝室 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submiss ...

  5. Ping隧道

    1.研究原因: 校园内网的探索,校内电子图书馆资源的利用,认证校园网 2.目的: 内网服务器:在一台因防火墙等原因仅限icmp数据通过的 公网服务器 : 建立icmp 隧道链接,  并在公网服务器上进 ...

  6. Java开发工程师(Web方向) - 03.数据库开发 - 第5章.MyBatis

    第5章--MyBatis MyBatis入门 Abstract: 数据库框架的工作原理和使用方法(以MyBatis为例) 面向对象的世界与关系型数据库的鸿沟: 面向对象世界中的数据是对象: 关系型数据 ...

  7. jvm 语法糖

    jvm 语法糖主要包括:   1. 泛型 相同擦除类型参数,返回值不同也可以编译成功, 对比方法重载矛盾.     原因:class文件格式中,只要描述符不是完全一致的两个方法就可以共存.     擦 ...

  8. Python爬虫使用浏览器的cookies:browsercookie

    很多用Python的人可能都写过网络爬虫,自动化获取网络数据确实是一件令人愉悦的事情,而Python很好的帮助我们达到这种愉悦.然而,爬虫经常要碰到各种登录.验证的阻挠,让人灰心丧气(网站:天天碰到各 ...

  9. angular-列表进行添加、编辑等操作时此行变色。

    今天接触了一个功能,就是在一个列表中,当你新增或者对第N列进行编辑,删除等操作时这一列会变颜色.让用户对操作了哪行数据更认识更清晰,刷新之后这行的颜色就会消失.我觉得这个很有意思,记录一下.效果如下. ...

  10. 【forEach控制器】-(针对,在不知道取到得参数有多少?但是要全部执行每一条的情况)

    1.使用json提取器,提取全部参数 2.设置forEach控制器,他会自己把json提起器,取到得所有值,全部使用一次再停止. z