考虑DP。

如果把转移看出当前位填什么数的话,这样是有后效性的。

如果考虑当前的序列是将1至n依次插入序列中的话。

考虑将i插入1到i-1的序列中,如果插入到<号中或者首部,那么最后就会多出一个大于号。

如果插入到>号中或者尾部,那么最后就会多出一个小于号。

所以定义状态dp[i][j]表示1到i组成的序列中,小于号的数目为j的方法数。转移方程即为所求。

# include <cstdio>
# include <cstring>
# include <cstdlib>
# include <iostream>
# include <vector>
# include <queue>
# include <stack>
# include <map>
# include <set>
# include <cmath>
# include <algorithm>
using namespace std;
# define lowbit(x) ((x)&(-x))
# define pi 3.1415926535
# define eps 1e-
# define MOD
# define INF
# define mem(a,b) memset(a,b,sizeof(a))
# define FOR(i,a,n) for(int i=a; i<=n; ++i)
# define FO(i,a,n) for(int i=a; i<n; ++i)
# define bug puts("H");
# define lch p<<,l,mid
# define rch p<<|,mid+,r
# define mp make_pair
# define pb push_back
typedef pair<int,int> PII;
typedef vector<int> VI;
# pragma comment(linker, "/STACK:1024000000,1024000000")
typedef long long LL;
int Scan() {
int res=, flag=;
char ch;
if((ch=getchar())=='-') flag=;
else if(ch>=''&&ch<='') res=ch-'';
while((ch=getchar())>=''&&ch<='') res=res*+(ch-'');
return flag?-res:res;
}
void Out(int a) {
if(a<) {putchar('-'); a=-a;}
if(a>=) Out(a/);
putchar(a%+'');
}
const int N=;
//Code begin... int dp[N][N]; int dfs(int x, int y){
if (~dp[x][y]) return dp[x][y];
if (y==||y==x-) return dp[x][y]=;
if (y>=x) return ;
int ans=(dfs(x-,y)*(y+)%+dfs(x-,y-)*(x-y)%)%;
return dp[x][y]=ans;
}
int main ()
{
int n, k;
mem(dp,-);
scanf("%d%d",&n,&k);
printf("%d\n",dfs(n,k));
return ;
}

HUAS 1476 不等数列(DP)的更多相关文章

  1. Codevs 4357 不等数列

    不等数列 [题目描述] 将1到n任意排列,然后在排列的每两个数之间根据他们的大小关系插入“>”和“<”.问在所有排列中,有多少个排列恰好有k个“<”.答案对2012取模. [输入格式 ...

  2. 模拟赛 Problem 2 不等数列(num.cpp/c/pas)

    Problem 2 不等数列(num.cpp/c/pas) [题目描述] 将1到n任意排列,然后在排列的每两个数之间根据他们的大小关系插入“>”和“<”.问在所有排列中,有多少个排列恰好有 ...

  3. 【P2401】不等数列(DP)

    这个题乍一看就应该是DP,再看一眼数据范围,1000..那就应该是了.然后就向DP的方向想,经过对小数据的计算可以得出,如果我们用f[i][j]来表示前i个数有j个是填了"<" ...

  4. BZOJ 2431: [HAOI2009]逆序对数列( dp )

    dp(i,j)表示1~i的全部排列中逆序对数为j的个数. 从1~i-1的全部排列中加入i, 那么可以产生的逆序对数为0~i-1, 所以 dp(i,j) = Σ dp(i-1,k) (j-i+1 ≤ k ...

  5. [模拟赛] T2 不等数列

    Description 将1到n任意排列,然后在排列的每两个数之间根据他们的大小关系插入">"和"<".问在所有排列中,有多少个排列恰好有k个&qu ...

  6. BZOJ2431:[HAOI2009]逆序对数列(DP,差分)

    Description 对于一个数列{ai},如果有i<j且ai>aj,那么我们称ai与aj为一对逆序对数.若对于任意一个由1~n自然数组成的 数列,可以很容易求出有多少个逆序对数.那么逆 ...

  7. [编程题] 小易喜欢的数列 dp

    https://www.nowcoder.com/question/next?pid=6291726&qid=112729&tid=12736753 [编程题] 小易喜欢的数列 时间限 ...

  8. 【bzoj2431】[HAOI2009]逆序对数列 dp

    题目描述 对于一个数列{ai},如果有i<j且ai>aj,那么我们称ai与aj为一对逆序对数.若对于任意一个由1~n自然数组成的 数列,可以很容易求出有多少个逆序对数.那么逆序对数为k的这 ...

  9. 不等式数列 DP

    度度熊最近对全排列特别感兴趣,对于1到n的一个排列,度度熊发现可以在中间根据大小关系插入合适的大于和小于符号(即 '>' 和 '<' )使其成为一个合法的不等式数列.但是现在度度熊手中只有 ...

随机推荐

  1. geoserver中WMS服务详细说明

    官方geoserver中WMS服务中几种操作的API的详细说明地址: http://docs.geoserver.org/stable/en/user/services/wms/reference.h ...

  2. Ubuntu 安装 搜狗输入法

    1.去下载搜狗输入法安装包: https://pinyin.sogou.com/linux/ 2.安装 sudo dpkg sougou****.deb 3.去设置 参考:https://blog.c ...

  3. EDM站点

    设计邮件模版 http://templates.mailchimp.com/

  4. MyBatis-自定义结果映射规则

    1.自定义结果集映射规则 ①查询 <!-- public Employee getEmpById(Integer id); --> <select id="getEmpBy ...

  5. Docker - 容器中的tomcat如何使用startup.sh启动

    网上大多介绍的catalina.sh启动,因为docker容器中,无法直接启动startup.sh. 解决方法: 编辑catalina.sh,找到 >> "$CATALINA_O ...

  6. WeTest功能优化第2期:云真机智能投屏,调试告别鼠标

    第2期功能优化目录 [云真机视频映射]云真机画面本地映射[兼容性测试报告]新增问题机型聚类功能[新增Android9.0]同步上线最新安卓系统 本期介绍的云测产品功能优化,既有重磅级技术突破,也有报告 ...

  7. git的一些操作指令

    1. mkdir learn 创建learn文件夹(也可不用命令创建,直接右击新建即可)   cd learn进入learn文件夹   git init  把learn文件夹 变成 可以用git管理的 ...

  8. hdu2099整除的尾数(暴力 省赛)

    整除的尾数 Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submi ...

  9. RAP2环境搭建整理(超详细)

    RAP2是阿里开源的接口管理平台,最近搭建了一下,将部署文档整理如下: 如果途中遇坑会在文章末尾记录下来嘻嘻 首先,确定环境是否部署好. RAP2所需的环境为: node.js 8.9.4+ mysq ...

  10. 使用 Gradle 配置java项目

    注意点 除非调试,不要print ,否则任务不会按照依赖的顺序执行,因为我们自己喜欢调试用print,但是会打乱执行顺序. 排除测试文件: sourceSets.main.java { srcDir ...