bzoj1818 [Cqoi2010]内部白点
Description
Input
Output
Sample Input
0 2
2 0
-2 0
0 -2
Sample Output
数据范围
36%的数据满足:n < = 500
64%的数据满足:n < = 30000
100%的数据满足:n < = 100000
正解:扫描线+树状数组。
容易发现,如果一个白点的上下左右都有黑点,那么它就能变成白点。
所以点是可以直接离散化的,无数点的情况也是没有的。
于是直接写一个扫描线,扫描每一列,然后用树状数组统计每一行是否上下都有黑点就行了。
#include <bits/stdc++.h>
#define il inline
#define RG register
#define ll long long
#define lb(x) (x & -x)
#define inf (1<<30)
#define N (100005) using namespace std; struct point{ int x,y; }p[N]; vector<int> g[N];
int hsh[N],num[N],cnt[N],can[N],c[N],mn[N],mx[N],n,tot;
ll ans; il int gi(){
RG int x=,q=; RG char ch=getchar();
while ((ch<'' || ch>'') && ch!='-') ch=getchar();
if (ch=='-') q=-,ch=getchar();
while (ch>='' && ch<='') x=x*+ch-,ch=getchar();
return q*x;
} il void add(RG int x,RG int v){
for (;x<=n;x+=lb(x)) c[x]+=v; return;
} il int query(RG int x){
RG int res=;
for (;x;x^=lb(x)) res+=c[x]; return res;
} int main(){
#ifndef ONLINE_JUDGE
freopen("white.in","r",stdin);
freopen("white.out","w",stdout);
#endif
n=gi();
for (RG int i=;i<=n;++i) hsh[++tot]=p[i].x=gi(),p[i].y=gi();
sort(hsh+,hsh+tot+),tot=unique(hsh+,hsh+tot+)-hsh-;
for (RG int i=;i<=n;++i) p[i].x=lower_bound(hsh+,hsh+tot+,p[i].x)-hsh;
for (RG int i=;i<=n;++i) mn[i]=inf,mx[i]=;
tot=; for (RG int i=;i<=n;++i) hsh[++tot]=p[i].y;
sort(hsh+,hsh+tot+),tot=unique(hsh+,hsh+tot+)-hsh-;
for (RG int i=;i<=n;++i) p[i].y=lower_bound(hsh+,hsh+tot+,p[i].y)-hsh;
for (RG int i=;i<=n;++i){
g[p[i].x].push_back(i),++cnt[p[i].y];
mn[p[i].x]=min(mn[p[i].x],p[i].y),mx[p[i].x]=max(mx[p[i].x],p[i].y);
}
for (RG int i=;i<=n;++i){
if (mn[i]>mx[i]) continue;
for (RG int j=,k;j<g[i].size();++j){
k=p[g[i][j]].y,++num[k];
if (can[k]!=(num[k]&&cnt[k])) add(k,),can[k]=;
}
if (mn[i]!=mx[i]) ans+=query(mx[i]-)-query(mn[i])+; else ++ans;
for (RG int j=,k;j<g[i].size();++j){
k=p[g[i][j]].y,--cnt[k];
if (can[k]!=(num[k]&&cnt[k])) add(k,-),can[k]=;
}
}
cout<<ans; return ;
}
bzoj1818 [Cqoi2010]内部白点的更多相关文章
- Bzoj1818: [Cqoi2010]内部白点 && Tyvj P2637 内部白点 扫描线,树状数组,离散化
1818: [Cqoi2010]内部白点 Time Limit: 10 Sec Memory Limit: 64 MBSubmit: 704 Solved: 344[Submit][Status] ...
- 【BZOJ1818】[CQOI2010]内部白点(树状数组,扫描线)
[BZOJ1818][CQOI2010]内部白点(树状数组,扫描线) 题面 BZOJ 题解 不难发现\(-1\)就是在搞笑的. 那么对于每一行,我们显然可以处理出来最左和最右的点,那么等价于我们在横着 ...
- 【BZOJ1818】[Cqoi2010]内部白点 扫描线+树状数组
[BZOJ1818][Cqoi2010]内部白点 Description 无限大正方形网格里有n个黑色的顶点,所有其他顶点都是白色的(网格的顶点即坐标为整数的点,又称整点).每秒钟,所有内部白点同时变 ...
- BZOJ_1818_[Cqoi2010]内部白点 _扫描线+树状数组
BZOJ_1818_[Cqoi2010]内部白点 _扫描线+树状数组 Description 无限大正方形网格里有n个黑色的顶点,所有其他顶点都是白色的(网格的顶点即坐标为整数的点,又称整点).每秒钟 ...
- bzoj 1818 Cqoi2010 内部白点 扫描线
[Cqoi2010]内部白点 Time Limit: 10 Sec Memory Limit: 64 MBSubmit: 1126 Solved: 530[Submit][Status][Disc ...
- 【BZOJ】1818: [Cqoi2010]内部白点(树状数组+离散+特殊的技巧)
http://www.lydsy.com/JudgeOnline/problem.php?id=1818 这一题一开始我就看错了,bzoj的那个绝对值109简直坑人,应该是10^9,我直接写了个暴力. ...
- [CQOI2010]内部白点
Description 无限大正方形网格里有n个黑色的顶点,所有其他顶点都是白色的(网格的顶点即坐标为整数的点,又称整点).每秒钟,所有内部白点同时变黑,直到不存在内部白点为止.你的任务是统计最后网格 ...
- 1818: [Cqoi2010]内部白点
Time Limit: 10 Sec Memory Limit: 64 MB Submit: 1394 Solved: 625 [Submit][Status][Discuss] Descriptio ...
- B1818 [Cqoi2010]内部白点 树状数组
这个题的想法很好想,就是进行排序之后直接检查每个点的上下左右是否有黑点就行.但是直接枚举显然不行,那怎么办呢?我们就用树状数组维护扫描线,把每排左右点看成一条线覆盖,然后从下往上扫,遇到下加一,遇到上 ...
随机推荐
- Scrum 冲刺博客第二篇
一.当天站立式会议照片一张 二.每个人的工作 (有work item 的ID),并将其记录在码云项目管理中 昨天已完成的工作 配置和连接微信小程序服务器 个人界面设计 部主页界面设计 答题界面设计 今 ...
- 网络协议-HTTPS
转载:http://www.renfed.com/2017/02/03/https/ 一.解决问题 HTTPS解决的是中间人攻击 公网:域名解析--IP:所以中间站点抢答返回错误IP 局域网:路由器找 ...
- C#操作Redis Set 无序集合
/// <summary> /// redis 无序集合 /// </summary> public static void Redis_Set() { RedisClient ...
- Linux+Git命令
Linux 文件与目录 cd命令: $ cd [path] //path为路径名称,这只是常规语法 1 详细用法如下: $ cd /d //进入d盘 $ cd d: //进入d盘 $ cd D: // ...
- Error:Execution failed for task ':xutils:mergeDebugAndroidTestResources'. > No slave process to proc
Error:Execution failed for task ':xutils:mergeDebugAndroidTestResources'. > No slave process to p ...
- JUC总览,来自汪文君整理
- git的问题(error: object file .git/objects/* is empty...)的解决方案及对git版本库文件的了解
由于操作不当,导致git版本库出了大问题,如下所示: error: object file .git/objects/8b/61d0135d3195966b443f6c73fb68466264c68e ...
- H5安卓端浏览器如何去除select的边框?
H5安卓端浏览器如何去除select的边框? android下没有问题,在apple下无三角号. -webkit-appearance:none; border-radius:0
- 01_Nginx入门
[Nginx概述] Nginx是一款轻量级的Web服务器/反向代理服务器及电子邮件(IMAP/POP3)代理服务器,并在一个BSD-Like协议下发行.其特点是占有内存少,并发能力强,事实上Nginx ...
- C中atoi和strcpy的自定义实现
这是两道经常考到的笔试题,看似简单的实现,其实专注到细节,还是有很多需要注意扣分的地方. atoi实现: #include <iostream> #include<ctype.h&g ...